About Chris King

Chris King is the editor in chief of Roofing magazine. He has covered the construction industry for more than 20 years, previously serving as editor of Roofing Contractor, managing editor of the Air Conditioning, Heating & Refrigeration News, and associate editor of Plumbing & Mechanical. He can be reached by email at chris@roofingmagazine.com.

Pieces of History

A home built in 1879. A hotel built in 1902. An industrial site that produced destroyers during World War II. What do these sites have in common? Roofs that stood the test of time, and then were recently restored with modern systems that preserve the historic integrity of the structures.

If you’re a bit of a pessimist, sometimes you might find yourself wondering how any roof gets successfully replaced. Re-roofing involves a coordinated effort that typically includes manufacturers, distributors, contractors and installation crews. Factor in architects, consultants, building owners, tenants, and members of other trades, and the odds of pleasing everyone increase exponentially. When you’re talking about a historic restoration project, the degree of difficulty gets even tougher, as historical societies and other organizations can have rigid standards designed to guarantee the building maintains its historic authenticity.

Historic projects can show the roofing industry at its best, and in this issue, you’ll find three case studies documenting roofs being restored on structures that have been around well over a century.

When the original soldered flat-panel roof on the historic Dilley-Tinnin home in Georgetown, Texas was damaged by lightning, crews from Texas Traditions Roofing were faced with a difficult, labor-intensive puzzle as they installed a double-lock standing seam roof system on multiple intersecting roof planes with low-slope transitions.

On the Chippewa Hotel on Mackinac Island, the Bloxsom Roofing faced a challenging re-roofing project and also found themselves facing turn-of-the-century problems on an island that doesn’t allow motorized vehicles. The roofing materials were delivered by ferry and transported to the jobsite by a team of horses.

At historic Pier 70 in San Francisco, an ambitious restoration project converted an empty industrial facility into a modern office complex. But ensuring occupant comfort proved a difficult task in a building without air conditioning. Central Coating Company devised a plan to install a spray foam roofing system on the uninsulated metal roof to minimize heat gain and ensure the historic look of the building.

These stories share common themes, including the importance of quality craftsmanship, then and now. In the case of Pier 70, Central Coating Company President Luke Nolan points out that aside from a few persistent leaks, the original corrugated metal roof was in pretty good shape.

“For us as a foam roofing contractor, we typically do roofing projects that have the benefit of adding insulation to the building,” Nolan said. “This one was different in that we were doing a foam roofing project that was really an insulation job.”

Complex Metal Roof Replacement Becomes Award-Winning Project

The main roof on the historic Dilley-Tinnin home was made up of multiple roof planes and featured an internal gutter. Photos: Texas Traditions Roofing

Located just outside of Austin in Georgetown, Texas, the historic Dilley-Tinnin home dates back to 1879. When it was struck by lightning, the main roof was damaged beyond repair. The original soldered, flat panel roof would have to be removed and replaced as part of a restoration project that posed numerous challenges.

The roof was made up of some 20 roof planes and included an internal gutter system, numerous penetrations, and multiple low-slope transitions. The new metal roof would have to be watertight and durable — and meet strict guidelines for historical accuracy.

Crews from nearby Texas Traditions Roofing were up to the challenge. They removed the damaged sections of the existing roof and installed a striking red standing seam metal roof manufactured by Sheffield Metals.

Michael Pickel, vice president of Texas Traditions Roofing, was called in to assess the damage. The original roof had a standing seam look to it in some sections, but it was comprised of metal panels that were soldered together. “It was metal 100 percent, from the fascia, to the gutter, to the flat portion, all soldered together into one piece,” he notes.

Crews from Texas Traditions Roofing removed the damaged sections of the existing roof and installed a red standing seam roof manufactured by Sheffield Metals.

The entire main roof area would have to be replaced, while the gray metal roof system on one wing was left in place. The main roof was comprised of multiple roof areas with slopes ranging from completely flat to pitches of 3:12 and 4:12. “It really wasn’t that steep, and that’s what caused us to recommend the double-lock panels,” Pickel says. “Given all of the soffits and all of the transitions, the slope required us to use a double lock.”

The Texas Traditions team worked for eight months with the local historical committee to ensure that the new roof would meet its guidelines. The committee approved the 2.0 Mechanical Standing Seam roof manufactured by Sheffield Metals, and the roof restoration work began.

The metal panels of the original roof were removed, along with most of the internal gutter. “The home was leaking pretty bad,” Pickel recalls. “There was some significant damage to the integral gutter, and we had to rebuild at least 80 percent of it. It was flat, and we added slope to it. It was a beast. We tore the whole thing off and came in with all manufacturer approved products: high-temp synthetic underlayment, high-temp ice and water, and the metal panels and butyl sealant.”

The existing roof was damaged by lightning. The soldered, flat panel roof had to be removed and replaced.

Most of the deck was in good shape, but the fascia needed extensive repairs. Extreme care had to be taken to protect the custom carpentry just below the eaves. “It was a crazy custom fascia,” Pickel notes. “We’ve never seen anything like it before.”

After the internal gutter was rebuilt, it was lined with a 60-mil TPO membrane from GAF. “We did a metal fascia, and it was also lined with TPO. It ran about 18 inches up behind the field panels to give it some added security. It was also lined with ice and water shield.”

The metal panels were roll-formed on the site. “Due to all the different lengths, we took measurements, rolled them on site, and applied them one at a time,” Pickel explains. “All of the trim and accessories were manufactured in our metal shop and brought to the site.”

Panels were lifted into place with a rope-and-pulley system and installed over Viking Armor synthetic underlayment and GAF StormGuard leak barrier. The re-roofed area was approximately 2,500 square feet, but the project was a labor-intensive puzzle. “It was a small project, but it was really cut up,” Pickel says.

Crew members were tied off 100 percent of the time at the eave and while installing the metal panels. “The nice part was it wasn’t too steep, and the lip of the integral gutter added another layer of safety as well,” Pickel explains. “From a safety standpoint, it was pretty basic; the steepest section was 4:12, and a lot of the work was done on the flat area.”

In the flat area, crickets were used provide adequate slope beneath the metal panels. The transitions made for some tricky details. “When you hit the low slope on metal — and that’s really 2:12 or less — you start to be more concerned about making sure you’re doing everything you can to get that water off that roof,” Pickel says. “If the water moves slowly, you have to do all you can to make sure that roof is fully sealed and ensure it just won’t leak.”

Crews tackled the challenges one at a time. “Just like any project, once you start to move on it, it gets a little bit easier,” Pickel says. “We learned a lot as we progressed. Each section made the next section a little bit easier.”

Texas Traditions submitted the project to Metal Roofing Alliance (MRA) for its Best Residential Metal Roofing Project competition, and MRA selected Texas Traditions Roofing and Sheffield Metals as the first-quarter winners in the category.

“When we got the news, we were just ecstatic,” Pickel says. “I think roofers are very proud of the work they do, and to get that recognition is fun and exciting. It also gets the team fired up.”

Pickel credits his company’s success to a simple formula: quality craftsmanship by talented and experienced crews. “One of our owners has been in construction for 40-plus years,” he says, referring to his father, Mike Pickel. “He handled multi-million-dollar commercial projects for a very large general contractor. His experience and ability to manage our jobs, educate our crews, and educate our superintendents helps out gain knowledge beyond the roof. There’s more to it than just the roof, and being mindful of the entire building is a huge advantage.”

For more information about how to enter MRA’s “Best Metal Roofing” competition for the trades, visit www.metalroofing.com.

TEAM

Roofing Contractor: Texas Traditions Roofing, Georgetown, Texas, www.texastraditionsroofing.com

MATERIALS

Metal Roof: 2-inch mechanical lock panels in Cardinal Red, Sheffield Metals, www.sheffieldmetals.com

Underlayment: Viking Armor synthetic underlayment, VB Synthetics, www.vbsynthetics.com

Leak Barrier: GAF StormGuard, GAF, www.gaf.com

SPF Roof System Solves Problems for Renovated Office Complex

Historic Pier 70 in San Francisco was a steel mill and a shipyard before it was converted into a modern mixed-use office complex. Central Coating Company applied an SPF roof system from Carlisle Roof Foam and Coatings on 88,000 square feet of the original corrugated metal roof. Photos: Central Coating Company

For more than 100 years, Pier 70 in San Francisco had a storied history, serving as a steel mill and a shipyard that produced destroyers during World War II. The site is a historic landmark, but it sat idle for some two decades before an ambitious restoration project brought it back to life as a mixed-use office complex. The facility now is home to companies including Uber Advanced Technology Group, which set up new offices in 82,000 square feet of the project’s first phase.

When the new tenants found interior temperatures became uncomfortably warm in the summer, Luke Nolan, president of Central Coating Company, was called in to consult on the roof system. With locations in San Jose and Madera, California, Central Coating specializes in spray polyurethane foam (SPF) roofing. The vast majority of its work consists of commercial and industrial re-roofing.

Two inches of SPF added a layer of R-13 continuous insulation, eliminated existing leaks and minimized heat gain from the uninsulated metal roof.

“California’s Title 24 doesn’t apply to historic buildings, so modern energy codes did not apply, and the renovation was completed without thermal insulation,” notes Nolan. “Modern office space was set up in a building where they used to forge steel and used natural ventilation. There was no air conditioning. With the uninsulated roof system, even in moderate San Francisco, radiant heat could cause interior temps to rise to 85 degrees on summer days.”

Nolan used infrared imaging to document the radiant heat entering the building from the roof. Temperatures on the underside of the metal roof topped 135 degrees. He recommended applying an SPF system as the only viable solution to minimize radiant heat, prevent recurring leaks, and preserve the building’s historic status.

Central Coating put together some budgets and commissioned a study by a roofing consultant to quantify the possible reduction in radiant heat. Roger Morrison of Deer Ridge consulting calculated the reduction in radiant heat from various thicknesses of spray foam. The recommendation was for at least 2 inches of SPF, which would add a layer of R-13 continuous insulation.

The next hurdle was making sure the system would meet the standards for the historic building. “The historic architect wanted to make sure that we were able to maintain the look of the corrugated metal on the existing roof,” Nolan says. “That helped us make the decision to go with a 2-inch system instead of going up to 3 inches, because at 3 inches the foam would self-level, and you’d lose the print-through of the corrugations.”

Central Coating was required to do a prototype installation on the building before the project was approved. “We basically did two 200-square-foot areas,” Nolan notes. “Talk about pressure. We knew we had to get it right.’”

After the test areas were finished and approved, the project got the green light.

Completing the Installation

The existing corrugated metal roof was comprised of multiple peaks, many featuring monitors — raised structures that housed rows of clerestory windows for daylighting.

The building was occupied and in use at the time, adding to the complexities of the safety planning. Central Coating had to erect scaffolding and pedestrian canopies to protect passers-by on sidewalks and at building entrances. Safety equipment for Central Coating’s crew members included horizontal lifeline systems on all of the ridges and temporary guardrails along all exposed edges.

The next step was substrate preparation. Crews power-washed the surface, capturing the water, which had to be filtered before it could be returned to the sewer system. The team then installed custom-designed metal flashings at the perimeter and masked the windows before the spraying began.

Working in sections, crews applied a spray foam system manufactured by Carlisle Roof Foam and Coatings. Crews covered approximately 5,000 square feet a day. The total project consisted of more than 88,000 square feet.

Carlisle GP Primer was applied with a sprayer to help increase adhesion of the spray foam. According to Nolan, it dries very quickly, usually within an hour, and the Carlisle PremiSEAL 70 SPF was then sprayed in place.

As part of the goal of maintaining the look of the corrugated metal, the SPF was applied in one application. “You can spray 2 inches in two lifts, but you are more prone to leveling out the surface,” Nolan explains. “We also sprayed the foam a little bit colder than you normally would, which somewhat negatively affected our yield, but we needed to maintain that corrugated look. It’s funny — usually we’re trying to get the foam as flat as possible, but that wasn’t the case here. However, it really worked out well. The sprayers did an excellent job. It was like an art project.”

The Carlisle SeamlessSEAL FR acrylic coating was applied in multiple passes. “The first base coat goes on the same day as the foam is sprayed,” Nolan notes. “Once we covered a certain area, we fell back to apply the mid coat and top coat.”

The top coat was produced in a custom color, Battleship Gray, to match the existing building. Granules were broadcast into the top coat.

Well-Executed Plan

The new SPF system qualified for a 20-year system warranty and achieved its goals, including minimizing heat gain. “The benefit to building comfort was absolutely huge,” Nolan says. “We reduced the temperature of the underside of the metal roof by almost 40 degrees on warm days.”

It was a challenging project, but everything went smoothly, notes Nolan. He credits detailed planning for the project’s success. “This took a tremendous amount of work just to get through the proposal and submittal process — and get the approval of the tenant, the owner, the Port of San Francisco, and the State Historic Preservation Office. And then we just had a really good plan in place for safety and logistics,” he says. “Everyone was very pleased with our process as well as the final result.”

Since the building was occupied, communicating with the tenant was crucial. “There was a lot of coordination with the people working downstairs,” notes Nolan. “The noisier steps, such as installing our metal or installing our safety equipment, we began very early — starting at 5:30 and finishing at 8:30 — so we were not bothering people in the offices during the workday. It’s one of those things that goes to show the importance of having a good plan, communicating that plan, and then executing it.”

The experience stands out for Nolan for many reasons. The project received a 2020 SPFA Annual Excellence Award from the Spray Polyurethane Foam Alliance. The Historic Pier 70 project was named the winner in the in the category of “SPF roof over 40,000 square feet.”

It was also a bit unusual. “For us as a foam roofing contractor, we typically do roofing projects that have the benefit of adding insulation to the building,” Nolan says. “What I mean by that is someone is usually calling us up because their existing roof is at the end of its useful life, and foam will have the added benefits of cutting down their energy bill and making their building more comfortable — but we’re doing it primarily because they need a new roof. This one was different in that we were doing a foam roofing project that was really an insulation job.”

TEAM

Roofing Contractor: Central Coating Company, San Jose and Madera, California, www.centralcoatingcompany.com

MATERIALS

SPF System: PremiSEAL 70, Carlisle Roof Foam and Coatings, www.carlislerfc.com

Acrylic Coating: SeamlessSEAL FR, Carlisle Roof Foam and Coatings

OSHA Issues Frequently Asked Questions About Face Coverings, Masks and Respirators in the Workplace

The U.S. Department of Labor’s Occupational Safety and Health Administration (OSHA) has published a series of frequently asked questions and answers regarding the use of masks in the workplace.

“As our economy reopens for business, millions of Americans will be wearing masks in their workplace for the first time,” said Principal Deputy Assistant Secretary for Occupational Safety and Health Loren Sweatt. “OSHA is ready to help workers and employers understand how to properly use masks so they can stay safe and healthy in the workplace.”

The new guidance outlines the differences between cloth face coverings, surgical masks and respirators. It further reminds employers not to use surgical masks or cloth face coverings when respirators are needed. In addition, the guidance notes the need for social distancing measures, even when workers are wearing cloth face coverings, and recommends following the Centers for Disease Control and Prevention’s guidance on washing face coverings.

These frequently asked questions and answers mark the latest guidance from OSHA addressing protective measures for workplaces during the coronavirus pandemic. Previously, OSHA published numerous guidance documents for workers and employers, available at https://www.osha.gov/SLTC/covid-19/, including five guidance documents aimed at expanding the availability of respirators.

For further information and resources about the coronavirus disease, please visit OSHA’s coronavirus webpage.

Under the Occupational Safety and Health Act of 1970, employers are responsible for providing safe and healthful workplaces for their employees. OSHA’s role is to help ensure these conditions for America’s working men and women by setting and enforcing standards, and providing training, education and assistance. For more information, visit www.osha.gov.

Interesting Times

“Stay safe.”

“Take care.”

“Hope you are healthy and safe.”

Work correspondence has taken on a different tone in the last couple of months as events have been overshadowed by the coronavirus pandemic. It’s touching. People have been so kind in their responses. It puts me in mind of the gruff but friendly desk sergeant in the 1980s TV series “Hill Street Blues,” who would end every pre-shift meeting — no matter how chaotic — with this reminder: “Let’s be careful out there.”

When I emailed safety expert Richard Hawk to thank him for his column in our last issue, he responded, “There is a centuries old Asian saying that is both a blessing and a curse: ‘May you live in interesting times.’ It fits now, huh?” 

It does. The business landscape and most work environments are changing rapidly. In this issue you’ll see case studies and technical columns, as well as several articles geared specifically to coping with the coronavirus pandemic as the roofing industry continues to fulfill its indispensable role in maintaining our infrastructure.

This issue contains advice for employers coping with the fallout of COVID-19 from Benjamin Briggs and Elliot Haney at Cotney Construction Law. You’ll find tips from contractors like Ken Kelly of Kelly Roofing and Steve Little of KPost Roofing & Waterproofing, who had to come up with creative solutions to meet new jobsite regulations and keep business flowing. You’ll also see the story of a roofing manufacturer that found a way to help meet critical shortages of medical personal protective equipment.

Duro-Last CEO Tom Saeli told me how a team of employees at Duro-Last came up with the idea to use the company’s materials and equipment to make medical gowns and masks for area hospitals. He also assured me his company was doing all it could to ensure employees manufactured the equipment safely — including maintaining social distancing, cleaning and disinfecting the plant and equipment, providing masks and face shields, and taking everyone’s temperature.

At Roofing, we are committed to maintaining our role as “the industry’s voice” through our glossy print issue and digital edition, as well as our website and e-newsletter. Tom Saeli noted Duro-Last was sharing its story in the hopes that it would inspire others to help. If you have a story you’d like to share, please let us know.

And hey — let’s be careful out there.

Duro-Last Quickly Retools to Manufacture Medical Supplies During Pandemic

Duro-Last reformulated its flexible PVC membranes and retooled equipment to manufacture medical gowns and masks to help hospitals facing equipment shortages. Photos: Duro-Last

As the coronavirus pandemic took hold, hospitals all over the world found themselves facing critical shortages of personal protective equipment (PPE). The state of Michigan was hit hard by the virus, and as news of critical supply shortages hit the media, team members at Saginaw, Michigan-based Duro-Last, Inc., came together determined to figure out a way to help.

According to Duro-Last CEO Tom Saeli, the group quickly developed a plan to manufacture medical PPE. “The genesis was that a small group of employees got together — people from engineering, sales, manufacturing, and R & D — and they were well aware of the crisis and the dire need for medical personal protective equipment at the hospitals. They got together on their own accord and came up with the idea to try to make medical gowns and non-surgical masks using our materials, processes and equipment.”

The meeting happened on Friday, March 20, and the group continued to work on it the next day. “On Saturday, they called me and said, ‘We’re making these because we know there’s a need,’” Saeli recalls. “I can’t take credit for any of this.”

Saeli, a member of the board of trustees at Beaumont Health, was in the perfect position to connect the team with the hospital. “We are well aware that Beaumont was the epicenter of the crisis in southeast Michigan for COVID-19 patients,” says Saeli. “I called them on Saturday, told them what we were doing, and the rest happened very quickly.”

Initial designs for masks and gowns were based on photos and schematics in the public domain. “Our people went up and down I-75 with gown and mask designs over the next few days, and they really nailed down a design that worked for Beaumont. By the following Friday, we were manufacturing product.”

Meeting a Need

The company, well known for manufacturing flexible PVC roofing membranes, converted equipment normally used to make roofing products for another use. “We have some very creative, clever people,” Saeli says. “Because we do so much custom fabrication, we were able to retool some of our equipment to manufacture this design for gowns and masks.”

The non-surgical masks, made from polyester and PVC, are washable and reusable. The gowns are made from flexible, transparent PVC and can be sanitized and reused.

The membrane itself was reformulated. The hospital gowns are made from flexible, transparent PVC that is 6 mils thick. The gowns are water- and fluid-repellant, and they can be sanitized and reused. The masks, made from polyester and PVC, can be washed and reused. Feedback from the hospital has been overwhelmingly positive. “There’s a big demand,” Saeli says. “We’re getting calls from all over the country for gowns and masks. There is also a trend for wearing masks in everyday life, including at jobsites, so the demand is just going to continue to increase. We are manufacturing 24 hours a day right now at our Saginaw plant, and it’s keeping more than 60 people employed.”

Duro-Last is looking to expand the capability to its seven plants across the country, but profit is not a motivator in this case. “We didn’t enter this for financial gain,” Saeli says. “We aren’t making a profit on this. We just did it because we saw a need that had to be served. It does help to employ some people, which is great as well. But the profit we are getting is an emotional profit, if you will. We’re doing this because it’s the right thing to be doing right now.”

The tight time frame to get the designs approved and equipment ready was probably the biggest challenge, according to Saeli. “It was the fastest product development I’ve ever seen,” he says. “The team just powered through any issues that came up. The mindset of our employees is to be very entrepreneurial, which goes back to our founder, John R. Burt. We are unique in our industry. We are the only ones who do custom fabrication. We’ve got a very entrepreneurial spirit that we encourage all the time. The DNA of our business is to take on challenges and come up with new ideas.”

As the products are being made, the company is taking precautions to ensure they are being manufactured safely. “For the last five weeks, we’ve been practicing social distancing,” Saeli notes. “We’ve been taking everyone’s temperature with a thermal forehead scanner when they come in and throughout the day. We clean and sanitize all of our equipment. We had our plant professionally disinfected. We are trying to do everything in our power to protect our employees.”

Duro-Last is encouraging other companies join the fight. “We had a call with SPRI, which includes many manufacturers in the industry, including our competitors, and we spoke with 25 people from around the county to tell others what we did, share our design with them, and encourage other companies to get involved any way they could in their local markets.”

The company is sharing the news with the media for the same reason. “We wanted to demonstrate to others that if a roofing manufacturer could do something, everyone else should look at it as well,” Saeli says. “We are sharing our story to encourage others to jump in and help any way they can.”

Shirley Ryan AbilityLab Features a Striking Standing Seam Metal Roof

The roof of Shirley Ryan AbilityLab incorporates striking V-shaped sections of standing seam metal panels and a tapered EPDM system. Photos: AJBROWNIMAGING.COM

The Shirley Ryan AbilityLab provides rehabilitation services to help patients recovering from severe conditions including traumatic brain injury, spinal cord injury, strokes, and cancer. The organization’s new 25,000-square-foot outpatient facility in Burr Ridge, Illinois, features a unique, uplifting roof design incorporating angled, V-shaped sections of standing seam metal roofing.

The low points in the center of each section and other low-slope areas are covered with an EPDM roof system. At the building’s perimeter, the roof and walls frame clerestory windows that allow natural light to flood the interior.

It took a talented team of construction professionals to execute the design conceived by architects in HDR Inc.’s Chicago branch. Willie Hedrick, Division Manager of All American Exterior Solutions, Lake Zurich, Illinois, notes that he and his team worked closely with the architect and the general contractor, Krusinski Construction of Oak Brook, Illinois, at each phase of the roof installation process.

“Initially the architect had specified a very nice but very expensive Terne-coated stainless steel panel,” notes Hedrick. “The project had budget issues, so we offered the Petersen prefinished steel panel as a value engineering option. The mechanically seamed Tite-Loc panel could handle the low-slope application and also came in a variety of colors. We also offered a 20-year watertight and finish warranty. For approval, we built a mockup for the architect and owner to review and also provided several references for completed projects around the Chicagoland area that they could visit to see finished examples of the proposed panel and color.”

Three different sections of the facility sport the Petersen’s V-shaped PAC-CLAD metal roof, with the wedges on each side sloping down to a valley in the center. Within the valley, the Carlisle SynTec EPDM roof system was installed over tapered insulation to ensure water would flow properly to the roof drains.

“The EPDM was an appropriate selection on the balance of the roof,” Hedrick says. “The workability of EPDM with tight, intricate details worked well throughout the project but especially within the gutter troughs between metal panel wedges.”

After the building’s metal deck was topped with half-inch DensDeck Prime and a self-adhered vapor barrier, crews from All American Exterior Solutions installed tapered polyisocyanurate insulation and 5/8-inch DensDeck Prime cover board. They then fully adhered 8,600 square feet of 60-mil EPDM.

All American then installed 21,500 square feet of 24-gauge steel PAC-CLAD Tite-Loc standing seam panels. The metal panels were installed over Carlisle WIP 300 HT underlayment, which topped 5/8-inch fire-rated plywood and 7 inches of polyisocyanurate insulation. Finishing touches included 3,800 square feet of Petersen .032 aluminum PAC 750 soffit panels and PAC 2000 prefinished Kynar column covers.

Installation Challenges

The weather was a concern, as the roof installation began in November and typical Midwest winter weather was looming. “The metal roof would be a time-consuming installation, so initially we focused on getting the building watertight for the GC by installing the EPDM roof and the metal roof underlayment, including insulation and plywood,” Hedrick explains. “The WIP 300HT allows for a 180-day exposure time to UV, so it gave us ample time to install the metal roof while ensuring watertightness in the space being finished below.”

Communication between all of the trades involved on the project helped ensure everything went smoothly. “There were trade coordination meetings with both the carpenter and the plumber,” Hedrick explains. “With the carpenter, we had to coordinate blocking heights to accommodate the tapered insulation. Also, due to the limited height to work within the gutter troughs and because the deck came down to a true V in the valley, we did an in-place mockup with the plumber to see how low the drain bowl could physically be set. Based on that elevation, we ordered custom EPS tapered edge panels to offset the V shape and provide a flat base to begin our tapered insulation system.”

Other details needed to be refined, including roof-to-wall transitions. “We worked with the GC and other trades to modify the detail for superior performance,” notes Hedrick.

Safety was always top of mind on the project. “Fall protection was the biggest safety concern,” Hedrick says. “We set up warning lines 6 feet from the edge creating a controlled access zone. Any work outside of the warning lines required workers to have 100 percent fall protection. All of the fascia and rake trim pieces were installed from an aerial lift.”

The installation was a complicated one, but All-American Exterior Solutions was up to the challenge. “We take pride in our ability to offer a range of products with a quality installation,” Hedrick says. “Our experience with multiple systems and manufacturers gives us the knowledge to be able to advise the design team on an appropriate product based on performance expectations balanced with budget.”

“Personally, I enjoyed the complexity and challenge that came with this project,” Hedrick concludes. “By no means is it a typical application; it required some critical and ‘outside the box’ thinking. I also enjoyed the collaborative nature a project like this requires. It was really a team approach between All American Exterior Solutions, the architects, the general contractor, and the other trades. The final product really shows that.”

TEAM

Architect: HDR Inc., Chicago, Illinois, www.hdrinc.com

General Contractor: Krusinski Construction Company, Oak Brook, Illinois, www.krusinski.com

Roofing Contractor: All American Exterior Solutions, Lake Zurich, Illinois, www.aaexs.com

MATERIALS

Metal Roof: PAC-CLAD Tite-Loc Plus Panels, Petersen, www.pac-clad.com

EPDM Roof: 60-mil EPDM, Carlisle SynTec, www.carlislesyntec.com

Underlayment: CCW WIP 300, Carlisle WIP Products, www.carlislewipproducts.com

Cover Board: DensDeck Prime, Georgia-Pacific, www.buildgp.com

Replacing Structural Metal Deck in Re-Roofing Applications

Photo: A.C.T. Metal Deck Supply

The commercial roof replacement project has been specified, the tear-off process begins, and crews are surprised to find unexpected corrosion and damage in the structural metal decking — the cold-formed corrugated steel sheets connected to steel joists or beams that support the roof system. They soon realize that large areas of the deck will need to be replaced, and the project grinds to a halt as crews try to figure out what type of deck is needed and how long it will take to get it to the jobsite. This doesn’t happen every day, but it happens often enough that specialty metal deck suppliers have evolved to help roofing contractors cope with such emergencies — and, hopefully, work with them to prevent similar problems in the future.

Roofing spoke with metal deck suppliers about the common questions they encounter and the ways they can help roofing contractors meet their needs. We also spoke with a contractor and a roof consultant to get their perspectives on issues surrounding metal decks and asked them to share some recommendations for successful re-roofing projects involving the replacement of structural metal decking.

Frequently Asked Questions

Nick V. Polizzi is president of A.C.T. Metal Deck Supply, headquartered in Aurora, Illinois. The company got its start as a metal decking subcontractor, furnishing and installing metal deck in the Chicagoland, and it started stocking metal deck 27 years ago. A.C.T. Metal Deck eventually got out of the installation side of the business, and the company now has 15 locations in 11 states that specialize in metal deck distribution.

Polizzi sums up the most frequent queries from roofing contractors this way: “The most common questions we receive are ‘What is this existing deck?’ ‘What do we use if we can’t match it exactly?’ and ‘Can I get it today?’ That is, do we have it in stock.”

In industrial facilities, the deck is typically left exposed. Often corrosion and damage are easy to spot during a visual inspection. Photo: CentiMark

It’s the type of phone call that’s familiar to Matt Weiss, president of O’Donnell Metal Deck, headquartered in Elkridge, Maryland. The company has been supplying metal deck in the Northeast and Mid-Atlantic for 35 years from its headquarters and a second location in Darby, Pennsylvania. “I do the same kind of dance every day,” Weiss says. “I hear, ‘Hey, we’re up on a roof and need some deck.’ I say, ‘What kind?’ Often there is just silence.”

John D’Annunzio, president of Paragon Roofing Technology in Troy, Michigan, has been a roof consultant for more than 25 years. He says he can’t remember a re-roofing job over a metal deck that didn’t require replacing at least some portion of the decking. Even with a thorough inspection, surprises can crop up. “There are times you look at it from the underside and don’t spot any problems, but when you start replacing the roof you find some issues,” D’Annunzio notes.

These are the types of problems Mike Horwath, Mid-Atlantic Regional Manager for CentiMark, tries to anticipate and avoid. CentiMark is a full-service roofing contractor headquartered is in Canonsburg, Pennsylvania, that covers the entire country. Horwath’s office is in King of Prussia, Pennsylvania. According to Horwath, his company’s crews are taught to identify the type of metal deck and the thickness before work on the project begins. “We determine what type of deck it is and have some of it sent to the jobsite, so that if we encounter any damage, we are prepared, versus shutting the jobsite down and going out to get it,” Horwath says.

When emergencies do arise, Horwath maintains it’s easier to get replacement decking more quickly than it was just a few years ago. Specialty deck suppliers often have a wide variety of materials in stock, and they can offer other services, including making deliveries in phases as the job progresses, to help with logistics.

Roof Inspections and Safety Precautions

D’Annunzio and Horwath try to go into every job with as much information as they can gather at the jobsite. If possible, D’Annunzio recommends obtaining documentation and as-built drawings. Horwath agrees, noting that the customer, building owner and facility managers can all be excellent resources. “They will have the history and context to discuss leaks, integrity issues or problem areas,” Horwath says, “Areas affected by high humidity levels or other processes from inside the building are also susceptible to deterioration.”

Workers must follow a site-specific safety plan with proper fall protection equipment during deck removal and replacement. Photo: CentiMark

The use of the building can be a critical factor. Certain industrial processes can raise a red flag. “Trash-to steam plants have ash houses with high pH levels. A pool environment can have very high humidity levels. Batteries and other manufacturing can involve acidic processes,” says Horwath. “Those are three of the most common points of concern: chemicals, high levels of humidity, and pH level.”

A visual inspection of the underside of the metal deck can provide crucial information. “We try to look at the underside of the deck from the interior, but it’s not always possible,” D’Annunzio notes. “In industrial facilities, the deck is typically left exposed, but in office buildings and retail locations, you often don’t have access from the interior to look at the deck.”

The underside of the metal deck should be examined for excessive corrosion, openings and abrasions, and structural damage, including deformation and deflection. “All areas that illustrate structural damage and/or excessive corrosion should be considered safety concerns and should be barricaded off at the roof level,” says D’Annunzio. “If the interior of the metal deck has been painted, a close-up inspection from a ladder or man lift may be required. The level of corrosion can often be determined by banging on suspect areas of the deck with a hammer.”

Sheets of metal deck are lifted to the rooftop. Decking should be secured by certified riggers. Photo: O’Donnell Metal Deck

Safety is the paramount concern, even at the inspection stage. Inspectors should never walk on a roof that isn’t safe. “First off, all personnel should have proper safety training and be properly trained to inspect decking,” Horwath states. “For our guys to go up on the roof, they have to be able to do an underdeck inspection and verify that no condition exists that would create a fall hazard in the roof. If they cannot do that, they would have to assume that there is a fall hazard, and they would have to set up fall protection to do that inspection.”

If a fall hazard can’t be ruled out, it has to be assumed that the potential for a fall hazard is there, and a site-specific safety plan with proper fall protection equipment is required until it can be proven that the decking is safe. If problems areas are discovered, they should be marked and barricaded off. “We will establish the level of severity and put together a fall prevention plan for the guys to follow,” Horwath says.

When inspecting the roof system on top of the building, core cuts can provide visual clues about the deck. D’Annunzio notes that core cuts are typically done on every project, and if corrosion is evident on the deck, he will expand the test cut to see how extensive it could be.

The inspection process should continue throughout the project, according to D’Annunzio. “During the remedial roof removal process, the metal deck should be inspected on a daily basis,” he states. “Deck panels that exhibit extensive corrosion and/or structural damage should be removed and replaced. Light rust and corrosion can be repaired with a wire brush and application of a rust inhibitor. Minor openings such as small holes can be covered with metal plates or overlay of a metal deck panel that is fastened to the existing metal deck panel.”

It’s not only workers on the roof that have to follow proper safety procedures. Everyone in the building below has to take precautions. “When decking is being removed or replaced, there can’t any workers below the area,” says D’Annunzio. “We’ve had instances in automotive projects where deck has had to be replaced, and the work has to be done during off-shift hours, whether it’s a night or a weekend.”

Identifying the Existing Deck

If the type of deck used isn’t available in the construction documents, the type, gauge and finish of the deck must be determined at the site.

The type of deck is based on the profile, which is designated by a letter. The most common types are A, B and F. (See Figure 1.) “The changes are in the shape, and the shape creates a different design strength,” notes Polizzi. “A-22 is not the same strength as B-22.”

Each profile has its own distinct measurements. “We give out a laminated profile card to all of our customers to keep in their trucks, so when they are out on the job, they can do a couple measurements to determine the profile,” Polizzi says. “It’s nice if they can measure both the bottom and the top, as we have measurements for both. If they aren’t sure, we can send them a sample, and they can take it out to the job and lay it into what they’ve got on site.”

According to Weiss, the simplest way to identify the type of deck on an existing building is to measure the gaps in the ribs on the profile. (See Figure 2.) “Check the top rib opening located between the top high hats or flanges of the deck,” Weiss recommends. “This dimension will quickly determine the type. Most of the time, the top rib opening is 2.5 inches, 1.75 inches or 1 inch, so you’re typically dealing with B deck, F deck or A deck — or it’s 3-inch-tall deck, and that’s usually N deck. However, the top rib isn’t always exposed until after a project has begun. In this case, the deck can be identified by the bottom width of the high hat.”

There are a few caveats, notes Weiss, as in some cases the deck might be from an older mill that doesn’t exist anymore. Texting pictures back and forth can help identify the type of deck.

The next steps are to determine the gauge and finish. “The easiest way to determine the gauge is by using a micrometer,” notes Weiss. “However, if you’re unable to obtain this measurement, a knowledgeable deck supplier should be able to recommend a gauge by understand the spacing supports and project requirements.”

The finish is usually determined based on visual inspection. The three most common finishes for roof decks are:

  1. Primer painted
  2. Galvanized G-60
  3. Galvanized G-90

“With no harsh environments, then painted deck is probably what’s used,” says Polizzi. “In wetter, harsher, more corrosive environments, galvanized finishes are more common. In very corrosive environments, stainless steel decking is used.”

The deck should be inspected for damage and corrosion throughout the course of the project. Photo: O’Donnell Metal Deck

B deck is the most common. “B deck, 22-gauge, with a galvanized finish is probably the most common type,” Weiss notes. “B-22, G-60 finish constitutes probably 70 percent of the roofing jobs we do.”

If the type of deck can’t be matched, suppliers can often recommend a compatible alternate. “Typically, when roofers are replacing a portion of an existing structure, the key is identifying the correct deck type to allow the new deck to lay into the existing flutes of the deck,” says Weiss. “This makes for faster install.”

B deck has the widest rib openings. F deck will nest inside B deck, and A deck will nest inside F and B. “They are all 6-inch centers; the difference is just in the width of the opening,” notes Polizzi. “The A deck is narrow, so it will fit on top of B, but if you try to put B on top of A, it will not work.”

“That’s why you still need these older roof profiles, because on a huge building with those narrow ribs, the 2.5-inch flute is not going to jam down into an inch,” says Weiss. “You can always take an F deck or an A deck and use it on a job with B deck because it nests in there.”

Removal and Replacement

By definition, deck panels are fastened to structural members, and this is crucial in determining the methods of removal and replacement — and determining the number and size of sheets needed for the project. “If it’s a new piece of decking, it has to be secured to a structural connection,” says D’Annunzio. “It should go from structural point to structural point. When covering major openings like skylight holes, for example, the replacement panel must span from joist to joist, and typically is nested in the existing deck.”

It’s critical to ensure the deck beneath a new roof system is sound and will perform well beyond the expected life span of the system. Photo: A.C.T. Metal Deck Supply

During the removal process, the safety plan must remain the top priority. “Ensure proper training and safety equipment is used on the roof and inside the building,” Horwath says. “Make sure the interior inspection limits the impact on the customer’s business. Clear out areas below the roof, make sure there is adequate material storage on the jobsite, and protect objects from damage. Keep the below area flagged off and keep people out of the area. The contractor should keep a fire watch to keep employees and people out the way. Remove and replace decking in full sheets. Remove and replace the roof and make it watertight by end of day.”

When installing new decking in a roof replacement project, the vast majority of the time fasteners are used, as often welding is not allowed. “CentiMark does not weld anything,” says Horwath. “We fasten everything down per Steel Deck Institute (SDI) standards or FM. We require our guys to be tied off until all of the decking is fastened down. With the stitch seams, they should be tied off while putting that together because it helps strengthen the seam joints. They should be tied off for the entire process until it is anchored and secured down.”

Fastening the side laps of deck together is typically done with a standard #10 self-tapping screw, according to Weiss. Fastening to beams or joist will depend on the project. A fastening pattern will determine the number and spacing of the fasteners to a support. The Engineer of Record (EOR) determines the fastening pattern based on the designed load calculations for building. “A fastener supplier can help guide you for qualified fasteners based on your needs,” Weiss notes.

If the profile cannot be matched or the decking won’t nest, it may be necessary to cut out the portion of deck to be replaced and butt the end of the new profile against the existing deck at the joist. When different types of deck are butted together, the gap is usually covered with a metal plate.

Common Mistakes

D’Annunzio pointed to roof details and penetrations as common problem spots. “The biggest areas of concern I see involve larger penetrations, such as a curb that’s 4 feet by 4 feet,” he says. “Contractors who replace the decking around the curb at an opening for an exhaust vent, for example, have to make sure it’s fastened correctly. If the deck is not properly fastened at the curb, it could lead to vibration, splits or openings in the roof system.”

Extreme care has to be used when removing old sections of decking, notes Horwath. “Be careful to watch out for electrical conduit and data lines,” he cautions. “No one wants to cut through conduit underneath the decking.”

Other common errors include underestimating the size and scope of the deck repair. D’Annunzio and Horwath recommend specifying the cost for deck replacement in every contract, even if the decking looks perfect. But estimating the amount of new deck material needed can be difficult, as total square footage is not the only concern. “It’s all about knowing what the bar joists spans are, and that determines the size of the panels you get,” Horwath points out.

Depending on the width of the building and the dimensions of the deck sheets, contractors might have to order an extra sheet to cover a given area. Weiss uses this example: “Let’s pretend you have a building that’s 76 feet wide. Sheets are 3 feet wide. Because it’s 76 feet wide, with 25 sheets, you still have an extra foot hanging off. So, what do you do with that extra foot? Technically you need an extra sheet, and you back lap that sheet.”

The spacing of supports and the cover width of the decking sheets are also critical, notes Weiss. “Knowing the spacing of the joist will allow a deck supplier to maximize your coverage while limiting waste from excessive overlap and save time by limiting field cuts,” he says.

Planning Ahead

Metal deck suppliers keep multiple profiles, gauges, finishes and lengths in stock at all times to help contractors. That’s a key part of their value proposition. But Polizzi and Weiss also emphasize that they are also available to help contractors plan ahead to maximize efficiency. After all, there could be lead times involved with some products. “Partnering with a knowledgeable deck supplier will save you time, money and frustration,” Weiss says. “We will aid you in the process by asking the right questions upfront to ensure a project’s success.”

Polizzi notes that some of his customers maintain their own stock of B deck. “Some roofers themselves will buy a couple of bundles from us so that when they do have an emergency or a tear-off, they can start to pull out of their own inventory,” Polizzi says. “They don’t have to keep a lot; they just have to keep enough to get going, and we’ll take care of the rest of the job.”

“It’s all about having it on hand and available and getting it to the contractor when they need it,” says Weiss. “But the more lead time they have, the better off the contractor really is. When projects become larger and/or supports are not typical or complicated, a specialty deck supplier should be able to provide shop drawings to include a deck layout to save time and minimize material waste.”

“In the past, roofers used to avoid anything to do with metal deck replacement because they often couldn’t get what they wanted,” notes Polizzi. “Today, we have helped these roofers create a new profit center because they know now they can go after that work and they can count on us to be there for them when they open up a roof.”

Replacing the deck can mean more profit for the contractor, but it can also adversely affect the schedule. According to D’Annunzio, when it comes to the deck, the key is to think long-term. “You have to go with the assumption that the roof you’re installing will last at least 20 years, and these days it can be much longer than that, with re-covers and maintenance,” he notes. “So, chances are you’re not going to see that deck again for more than 20 years. If it’s suspect, it’s better to deal with it while you are doing the remedial work.”

“We’ve been called in to examine projects with a roof that’s just a few years old where the deck below should have been replaced beneath the roof system, and it wasn’t,” D’Annunzio continues. “You can imagine the difficulty of replacing the deck at that point. When it comes to metal deck, my attitude is, ‘When in doubt, take it out.’”

Metal Deck Resources

For more information about metal decks, visit:

Steel Deck Institute, www.sdi.org

NRCA, www.nrca.net

SMACNA, www.smacna.org

Factory Mutual, www.fmglobal.com

A.C.T. Metal Deck Supply, www.metaldecksupply.com

O’Donnell Metal Deck, www.odonnellmetaldeck.com

SPF System Solves Problems for Arizona Homeowners

Overson Roofing specified a spray polyurethane foam re-roof for this Scottsdale residence to eliminate ponding issues and reduce energy costs. Photos: Overson Roofing LLC

Pat Overson has been running roofing companies since 1982. He currently co-owns Overson Roofing LLC in Mesa, Arizona, a company he founded along with his son Brett in 2005. Approximately 85 percent of the company’s work is residential, most of it re-roofing. A large chunk of that work — Overson estimates 20 percent — involves spray polyurethane foam (SPF), which is common on houses in Arizona.

“With the heat we have out here, it really helps insulate your home as well as provide good roof over your house,” Overson says. “It is the only roof out there that provides an insulation factor somewhere around R-7, which is close to about 4 inches of fiberglass insulation.”

Overson Roofing strives to recommend the best roof system for each project. Overson often finds himself recommending spray foam for existing low-slope roofs, especially those with drainage issues. He pointed to a recently completed residential project as an example. The 3,100-square-foot home in Scottsdale had a three-ply hot tar built-up roof. The homeowners noticed ponding problems, and they were also looking for ways to make their home more energy efficient. Overson felt the house was a great candidate for a Lapolla spray polyurethane foam roofing system with an elastomeric coating. The white elastomeric coating protects the SPF from ultraviolet rays and provides reflectivity to minimize temperatures on the roof.

“Sometimes customers ask us for a foam roof, and we evaluate it and make sure that it would be a good roof for their project,” he notes. “Often we recommend a foam roof when there are drainage problems because it’s a very easy system to help modify or enhance the drainage on a roof that has ponding problems. In this case, the homeowners were also very interested in the insulation factor, and they were looking to save money on electric costs and make it more economical to heat and cool.”

Roof Removal and Installation

The first step was preparing the house for the roof removal, which was done by a separate tear-off crew. The work area was covered with tarps, and the roof system was removed and taken away in a trailer. Magnets are used as part of the clean-up process to ensure nails and other debris are not left behind.

The Lapolla SPF was applied in two layers, each a half an inch thick. The system was topped with an elastomeric coating.

The substrate was then cleaned and primed before the SPF system was applied with a sprayer. When the two-part system is applied, parts A and B combine to form a closed-cell roofing system. “The result is a monolithic roof,” Overson says. “Foam roofs usually don’t have leak problems because there are no seams, and that’s a big advantage. It will also seal to almost everything. It will seal to metal, it will seal to wood, it will seal to stucco, and it will seal to almost every type of roof system.”

The keys to a successful project include proper substrate preparation and being aware of weather constraints. “It has to be, as we call it, ‘clean, dry and tight,’” Overson says. “It has to be a clean roof surface. It has to be dry — foam doesn’t adhere to any kind of moisture or water at all. And it has to be tight, which means there can’t be any bubbles or blisters in the systems you’re going over.”

After the roof is removed, the surface must be cleaned with brooms or blowers. Then the area must be secured and taped off to ensure the foam won’t be sprayed anywhere it’s not required. For example, windows and walls might need to be covered.

“It’s almost like you are a painter up there,” notes Overson. “You often have to do extensive tarping and taping. You also have to make sure it’s not windy. You don’t want winds in excess of 5 or 10 miles per hour. Preparing the area is very important step. You don’t want any overspray.”

The spray foam is applied in two layers. “You spray it on a half-inch think the first lift, and you have a second lift, also a half an inch,” Overson says. “It dries pretty quickly — often in a few minutes — so you can put on the second layer almost immediately. Similarly, after the second coat dries, you can apply the coating. We used an elastomeric coating in this project, while others might call for a polyurethane, silicone, or acrylic coating.”

In coping with different types of substrates, the skill and experience of the applicator can be crucial. “It’s an art as much as a skill,” he says. “You have to have the right rhythm and the right touch. We have really skilled applicators, and they do a great job. The techniques vary, but you are just trying to get an even surface, an even spray.”

In this case, the application was designed to eliminate drainage problems. In low areas, crews added another inch of insulation and created the proper slope toward the scuppers. “You can feather it in, and that’s where the skill of the applicator really shows,” he says. “It’s exciting that you can help people with these issues. You can’t do this with other products.”

As part of the safety plan, applicators wear white body suits that cover their skin and clothing, as well as goggles and protective breathing equipment. Proper fall protection plans must be in place for each project.

Benefits for Homeowners

Feedback from the owners has been positive, according to Overson. “We were able to enhance the drainage quite a bit and eliminate all of the ponding and drainage issues they had,” he says. “They were happy about that, and they also were excited to find out how much they saved on their monthly bills. They haven’t gone through a full cooling season yet, but many of our homeowners stay in touch with us over the years, and some find they are saving $40 to $50 a month on their electric bills.”

Overson summed up the project this way: “Around here, we say roofs have to do two things: they have to not leak and look good. And we achieved both of those things on this project. This is a nice-looking roof. It’s white, and it will reflect the sun, and that’s a big factor here in Arizona. We take pride in our jobs, our crews take pride in their jobs, and we know it’s not going to leak. The customer was very happy, and if the customer is happy, we are happy.”

TEAM

Roofing Contractor: Overson Roofing LLC, Mesa, Arizona, www.oversonroofing.com

MATERIALS

Roof System: Lapolla Spray Polyurethane Foam and Elastomeric Coating, Icynene-Lapolla, www.lapolla.com

Planning Ahead Sets Up Warehouse Re-Roofing Project for Success

Citizens Service Center is the primary document storage facility for El Paso County, Colorado. When the roof had to be replaced, protecting the interior of the facility was critical. Photos: Exterior Solutions Group

The most crucial decisions on a project are often made before work even begins. According to Ken Flickinger Jr., president of Exterior Solutions Group, that was the case with the recent Citizens Service Center re-roofing project in Colorado Springs. Owned and managed by El Paso County, the building is the primary document storage facility for the county. The building’s historic documents — some dating back to the 1800s — were under threat of damage due to an active roof leak. The existing roof also had extensive hail damage, so the roof replacement project was put out for bid.

With offices in Colorado, Iowa and Oklahoma, Exterior Solutions Group does all types of roofing work, but its focus is primarily on commercial roofing, both re-roofing and new construction. Flickinger, who heads up the location in Parker, Colorado, was definitely intrigued by the project.

The scope of work involved removing old HVAC equipment on the roof, which would be done by a separate party in coordination with the roofing contractor. The HVAC equipment was obsolete; it had been replaced and relocated a few years earlier. “It was an interesting project because there was equipment everywhere on this roof,” he says. “It looked like an automotive manufacturing plant. For us, we like those types of projects. We like ones that are a bit out of the ordinary and require a little bit higher level of project management. So, that’s what drew us to bidding the job.”

Tim Hicks, the salesperson at Exterior Solutions who sold the job, explains that the original spec called for white EPDM, with TPO as an accepted alternate. “Oddly enough, they didn’t require you to do the base bid to bid the alternate,” he notes. “We chose to just bid the TPO. We ended up being the low bidder on that, and that’s how we got the project.”

After obsolete HVAC equipment was removed, crews from Exterior Solutions Group installed a TPO system from Johns Manville.

The logistics of the removal and roof replacement would be complicated, and it became obvious that access to the roof would also be an issue, as it was a high-security building. “This is a multi-story building, and the amount of security we would have to go through to enter the building and get up to the roof hatch would’ve created all kinds of problems,” Hicks explains. “So, we suggested putting a stair tower up and giving us complete access from the outside. We’d never have to enter the building. They had never even considered that option, but as we walked them through it and said, ‘This is how we’d like to set the job up,’ they replied, ‘We love it.’”

The next step involved coordinating equipment removal with the HVAC contractor. Again, a suggestion from Exterior Solutions helped increase efficiency and cut costs. The HVAC contractor’s original plan called for roofing crews to take out the roof system around the HVAC units, allowing HVAC crews to cut out sections of the steel decking below the equipment. The deck sections would have to be replaced before temporary roofs could be installed to keep the building watertight. The team at Exterior Solutions pointed out that there was no need to remove the decking. Instead, the equipment supports could be cut off as close to the deck as possible, and the ends of the supports could be buried in the insulation of the new roof system.

Equipment Removal

In the end, that’s the plan they executed. A fire watch was set up inside the building as equipment was removed. Crews from Exterior Solutions removed the existing roof to give the HVAC crews access. “We basically created a hole in the roof for them so they could see what they were doing,” Hicks explains. “We would slice the existing TPO back and take out the insulation. They would put down welding blankets in the area and then use cutting torches to cut the I-beam and L-beam steel supports off. Our roofers were on site to make sure supports were cut down to the proper length. As soon as the supports were cut off, we basically filled the hole.”

The deck was left intact, making it much faster and easier to patch the existing roof. It was critical to ensure the roof was weathertight every night to protect the documents inside the building. “We put the insulation back, we replaced the membrane, and we used an Eternabond product or welded a small cover strip around it, depending on the size of the hole,” notes Hicks.

The HVAC equipment was taken off the roof with a crane. Once the equipment was removed from one side of the roof, crews began installing the new system.

Roof Installation

With the equipment gone, the rest was clear sailing. “In all honesty, the roof was easy,” Flickinger says.

The existing roof system was torn off down to the deck and a TPO system from Johns Manville was installed. New polyiso insulation was topped with a fully tapered system to ensure proper drainage. After DensDeck cover board was installed, the 60-mil TPO membrane was adhered into place.

“We worked from one side to the other,” Hicks says. “The high point of the roof with the tapered system was in the center, and water is pushed to both sides where there are internal drains and overflow scuppers. We started at the low point and roofed up the hill to the center on one side, and then turned around and did the exact same thing on the other side.”

Details were minimal — just a few penetrations and a curb around the roof hatch. The edge metal installed was the Anchor-Tite system manufactured by Metal-Era. “We offered an upgrade on the metal edge,” notes Hicks. “Instead of a shop-fabricated metal edge, we recommended Anchor-Tite all the way around. After all, the area is subject to high winds. We felt that was a better way to go.”

The TPO system installed was ideal for the project, according to Flickinger. “I’ve been a thermoplastic guy my entire career,” he says. “I’m a big believer in heat-welded seams. We thought the heat-welded seams and adhered walls offered a better approach. We think it’s a very good-looking roof, and with the addition of a cover board — which the original roof didn’t have — it would definitely improve its hail performance.”

Hicks credits the manufacturer for assistance on the project. “Manville was very supportive,” he says. “They were local, and their technical support is excellent. We thought that for a project like this, to have a partner who was right there with you was important.”

The project was completed in less than a month, and Flickinger believes the key to executing the job efficiently was the decision to set up the stair tower. “That was the suggestion of our project manager,” says Flickinger. “Our company likes using stair towers, especially when we’re talking about long ladder runs. For us, it’s partly about safety for our own people, but because the building was secured, and as they talked to us about the steps we would have to take on a daily basis to just get access to the roof, we realized it was just going to kill us on production. We were going to waste so may man-hours on a weekly basis just getting to and from the roof. That was one of the driving factors that got the owner to agree to the stair tower, and we got a change order for it.”

The cost of the change order was minimal compared to the time and money it saved. “We have some really bright people,” says Flickinger. “They are all really good at looking at something and seeing if there is a better way. One of our strengths is we are really good at creative solutions, whether it’s something as simple as avoiding the grief of going through a secured building or taking a step back and asking, ‘Why cut holes in the deck? Why can’t we just cut these supports off above the deck because we are burying them in 6 inches of insulation anyway?’”

“The other piece for us is that we focus on the safety side of it, not only for our own people, but also the site safety and the safety of the people inside the building,” Flickinger continues. “We are very aware of that as we set our jobs up and decide where to set our materials and those types of things.”

The last component of a successful project is top-quality workmanship. “We focus on doing it right the first time,” Flickinger says. “Getting that customer satisfaction, not only at the end of the job with a great roof, but also during the project by trying to minimize the pain that an owner typically goes through in a roofing project, that’s one of our strengths that this project demonstrates.”

TEAM

Roofing Contractor: Exterior Solutions Group, Parker, Colorado, www.exteriorsolutionsgroup.com

MATERIALS

Roof Membrane: 60-mil TPO, Johns Manville, www.jm.com

Cover Board: DensDeck Prime, Georgia-Pacific, www.buildgp.com

Edge Metal: Anchor-Tite, Metal-Era, www.metalera.com