Two Commercial Installations Are Honored with ARMA’s QARC Awards

Advanced Roofing Inc. installed two new roofs at a luxury retired-living community in Palm Beach Gardens. These projects were Silver Award winners in ARMA’s 2016 QARC Awards.

Advanced Roofing Inc. installed two new roofs at a luxury retired-living community in Palm Beach Gardens. These projects were Silver Award winners in ARMA’s 2016 QARC Awards.

Commercial roofs are the workhorses of a building system. They endure wind, rain, hail and foot traffic while serving as an important line of defense between the outside world and a building’s occupants. If inhabitants never consider the roof over their heads, it means the roof system is doing its job well.

The Washington, D.C.-based Asphalt Roofing Manufacturers Association (ARMA) showcases these hardworking but rarely celebrated systems in its annual Quality Asphalt Roofing Case- study (QARC) Awards program. Each year, the organization seeks the top asphalt roofing projects in North America that demonstrate durability and high performance, as well as beauty. The QARC awards honor a Gold, Silver and Bronze winning project that illustrates the benefits of asphalt roofing.

The Silver Winner of ARMA’s 2016 QARC Awards is a prime example of what a commercial roofing system must stand up to while remaining water-resistant and durable. Advanced Roofing Inc. (ARI), which has service areas throughout much of Florida, was hired to install two new roofs at a luxury retired-living community in Palm Beach Gardens. These reroofs were completed in 2015 and were submitted to ARMA’s awards program.

The two buildings in this community were originally built in the 1990s and were found to have numerous issues that demanded immediate attention when new management reviewed the property. The area’s hot climate requires many air-conditioning units on the roof that frequently have to be serviced. This aspect of a commercial roof can be overlooked by building owners but has a significant impact on its service life and performance. Because HVAC units and related equipment are heavy and may require frequent maintenance that brings extensive foot traffic, they can cause a roof system to deteriorate faster than normal. That was the case with the existing roofs in this living community.

Toward the end of the roofs’ service lives, temporary fixes, like patching and coatings, were made. These regular repairs only increased the operational budget while the core issues remained unresolved. According to Jessica Kornahrens, project manager at ARI, “The existing roofing system was at risk of a failure that could potentially close the building and leave its elderly residents without a home.”

ARI was hired by the new building owner and property manager to tear off the existing roofs of these two buildings and install an asphalt roofing system on each. Because of the significant durability required by the new roofs, the roofing contractor chose a high-performance three-ply modified bitumen asphalt roofing system.

The two buildings in the retirement facility were still occupied during the reroof project, creating an additional challenge during installation, but the work came in on schedule and within budget.

The two buildings in the retirement facility were still occupied during the reroof project, creating an additional challenge during installation, but the work came in on schedule and within budget.


“We knew that this type of redundant, multi-layered system would protect these buildings long-term despite the high foot traffic and heavy equipment they have to stand up to while also meeting the project budget,” Kornahrens says. “This particular system also has a Miami-Dade Notice of Acceptance with testing and approvals for Florida’s high-velocity hurricane zone.”

Between foot traffic and harsh weather, the contractors knew this asphalt roofing system was up to the task.

Challenging Installation

Before they could begin the project, ARI had to first stop the existing leaks in the first 45,900-square-foot building and the second 51,000-square-foot building, followed by a tear-off of the roof system down to the light- weight concrete. ARI fastened the modified anchor sheet with twin-lock fasteners directly into the lightweight insulated concrete deck and then torch applied an interply and fire-retardant granulated cap sheet.

Photos: Smith Aerial Photography

Pages: 1 2

Avoid Problems with Skylights through Proper Installation

As trendy as they are for green building and demonstrably beneficial for energy savings
through daylighting, skylights are sometimes viewed with a certain trepidation by roofing
contractors. After all, skylights are essentially holes in the roof with the potential to compromise roofing workers’ handiwork by providing unintended leakage paths.

Proper installation is essential to realizing designed-in leak-free performance and can vary by type of roofing involved and the type of skylight. It is recommended to always refer to and use the skylight manufacturer’s instructions that are specific to the roof system being installed. Of course, applicable code requirements supersede any instructions to the contrary.

 A commercial skylight provides more daylight and improves an indoor recreational setting. PHOTO: Structures Unlimited

A commercial skylight provides more daylight and improves an indoor recreational setting. PHOTO: Structures Unlimited

AAMA 1607-14, “Installation Guidelines for Unit Skylights”, which is an industry consensus guideline published by the Schaumburg, Ill.-based American Architectural Manufacturers Association, intended for use when manufacturer instructions are absent or incomplete, provides basic step- by-step installation instructions for 19 different ways to integrate various roofing materials, underlayment, flashing and skylight-mounting configurations to preserve the drainage plane. This must be the overriding intent of any installation protocols.

Note that some roofing contractors warrant their work against leakage, and skylight installation should not compromise or void such warranties. When in doubt, independent installers should confer with the roofing contractor.

INSTALLATION SUPPLIES

Proper installation begins with selection and use of the proper supplies—notably sealants, fasteners and flashing.

SEALANT SELECTION
If sealants are recommended by the manufacturer, follow the manufacturer’s specifications. When the manufacturer is silent about the use of sealants and the installation guidelines dictate their use, the following recommendations should be observed:

  • Compatibility—The sealant must not adversely react with or weaken the material it contacts.
  • Adhesion—The sealant must have good long-term adhesion. Surface preparation, cleaning procedures and, in some cases, primers are recommended by the sealant manufacturer.
  • Service Temperature—If the installation location involves elevated ambient temperatures, the sealant should exhibit corresponding service temperature performance.
  • Durability—The sealant must be capable of maintaining the required flexibility and integrity over time.
  • Application—Proper bead size and other application details should be followed to ensure a well-performing joint. Improper use of sealants can dam water pathways, so an important rule of thumb is not to block any weep holes that may be in the skylight system.

Typically, sealant or roofing cement is applied around the perimeter of the rough opening (deck mount) or the flange of self-flashing units or the top edge of a mounting frame. However, some skylights are designed with integral flashing flanges to be installed without the need for sealants.

It is also possible to utilize rolled roofing membranes as a substitute for sealants or plastic roofing cement.

Pages: 1 2 3

Architects and Roof System Designers: Your Details and Drawings Are Seriously Lacking Design Intent

Dear Mr. and Ms. Architect and Roof System Designer:
The following are comments I hear over and over:

  • “Seventy-five percent of the time I cannot determine what roof assembly an architect wants from a spec.”
  • “One always feels they have to play private detective and try to figure out what [a roof system designer] actually wants.”

As an architect and registered roof consultant, I take great pride in my roof system designs and detailing, which are project specific, at minimum meet the code, and more often than not exceed code with all conditions and building components that impinge on the roof detailed for the specific project. In listening to construction managers, general contractors, roofing contractors and suppliers talk, you would think that architects barely know that the roof is on top of the building! It seems most do not even have basic knowledge and certainly don’t know when water may flow uphill. This is embarrassing to hear! It starts in the university with the curriculum placing all emphasis on building design and not how to actually construct a building. In many ways, this is good for my firm as we are busy fixing what should never have required fixing.

Peer review of several projects designed by very large (and what you would assume to be very sophisticated firms) and even small boutique firms reveals the following:

A. The roof system design is not code compliant in regard to tapered insulation.

B. The roof system itself is not code compliant, but contract documents require “contractor to verify or be responsible for code compliance”. This begs the question: Who is being paid to design? Is it the architect or the contractor?

C. Structural and, especially, structural lightweight concrete pose significant roofing challenges and architects have no clue about that, resulting in roof systems in danger of imminent failure.

D. The accuracy of construction documents in general is very, very low. Even I cannot often determine what roof assembly an architect wants from a specification.

  • 1. For example, architects do not list products in the specs that will be used in the assembly.
  • 2. Substrate boards, cover boards and vapor barriers are frequently listed in the specs but never shown on the plan.

E. The detailing of wall air barriers to roof vapor or air barriers is not shown and certainly no definition of responsibility prescribed as to who is to tie these materials together.

F. Understanding of material limitations is non-existent.

  • 1. Weather, wind, cold, snow, humidity and temperature affect the installation of roof system components. I especially get a kick out of seeing water-based adhesives being specified for construction taking place in winter; this means future work for my firm.

G. Roof edges and how they terminate at high walls is never detailed.

H. Roof drains and curbs are improperly or not detailed.

I. Specifications are inadequate—often boilerplate generic—and do not match the drawings. I’ve also seen non-specific details that are not to scale or do not reflect actual conditions.

  • 1. Design wind speed is not given when appropriate.
  • 2. Warranty requirements are in- correct, not thought-out or not specified at all.

J. Architects or consultants sometimes have multiple designs listed in the specification, leaving it to the con- tractor to issue RFIs that, more often than not, are not answered.

  • 1. These inconsistencies lead to frustration and, in many cases, the contractors just decide it is not worth the time or effort to even bid the project or add a good deal of money to cover undefined items.

K. I’ve witnessed owners who have hired professionals to design build- ings costing hundreds of millions of dollars, and yet these “professionals” often do not exhibit the standard of care expected.

  • 1. Poor designs compound when met with an irresponsible contractor who will not do his or her due diligence and investigate what is needed to install a quality system.

Illustrations: courtesy of Hutchinson Design Group Ltd.

Pages: 1 2 3 4

A Michigan Contractor Is Challenged to Recreate a Roof’s 40-year-old Mural

Kevin Clausen has faced a lot of challenges during his 30 years at Great Lakes Systems, a Jenison, Mich.-based construction company specializing in single-ply commercial roofs. But when he received a call several years ago from a Kent County official about an unusual upcoming project, Clausen knew he might be taking on a challenge unlike any other.

Artist Alexander Calder created the 127-square-foot red, black and white mural painted on the roof of the Kent County Administration building.

Artist Alexander Calder created the 127-square-foot red, black and white mural painted on the roof of the Kent County Administration building.

Kent County is home to Grand Rapids, Mich. To understand the challenge that Clausen was about to face, it’s important to understand a little Grand Rapids history. In the late 1960s, swept along by the tide of enthusiasm for urban renewal, the city demolished 120 buildings in its aging downtown core and built a new City Hall and County Administration building, surrounded by a concrete plaza. The new government buildings were designed by architects who were shaped by mid-century ideas of good urban design: sleek, boxy single-use structures, easily accessed by automobile and, therefore, providing ample parking. Pedestrians were something of an afterthought.

At about the same time, the National Endowment for the Arts initiated its Art in Public Places Program. There was general agreement in Grand Rapids that the broad plaza in front of the new buildings seemed empty and generally lacked visual interest. The city applied for a grant to support the funding of a monumental sculpture to serve as a focal point for its new plaza and selected renowned sculptor Alexander Calder for the commission. Two years later, Calder’s sculpture—bright red, 43- feet tall, 54-feet long, 30-feet wide, weighing 42 tons—took its place on the central plaza. It was named “La Grande Vitesse”, which roughly translates into “Grand Rapids”. For obvious reasons, the broad plaza has been called Calder Plaza—and has been the focus of controversy ever since.

The Calder sculpture at ground level on the plaza inspired another important work of art in the area. The flat, unadorned roof of the administration building adjacent to the plaza was drawing attention for the wrong reasons. It was easily viewed from the nearby taller buildings, including the new City Hall, and several city administrators thought some sort of added visual element was necessary for the space. Calder again was pressed into service and designed a large mural for the roof of the administration building. When it was completed in 1974, the 127-square-foot red, black and white mural painted on the roof of the Kent County Administration building was the largest Calder painting in the world.

A DURABLE ROOF

Fast-forward three decades and the aging modified bitumen roofing membrane, which supported the Calder mural, had weathered badly and was in need of repair or replacement. The challenge? How to repair the roof and still preserve the Calder mural. Given the deteriorated condition of the roofing membrane, a complete tear-off was required. Basically, the task at hand was to replace the canvas of a painting and recreate the painting, maintaining its original appearance.

Great Lakes Systems, Jenison, Mich., was challenged to recreate the Calder mural on a new EPDM roof after tearing off the modified bitumen roof on which the mural was originally painted.

Great Lakes Systems, Jenison, Mich., was challenged to recreate the Calder mural on a new EPDM roof after tearing off the modified bitumen roof on which the mural was originally painted.

The team at Great Lakes Systems has a long track record of doing work for Kent County, including the jail, juvenile facility and several libraries. Therefore, county leaders turned to Great Lakes Systems when they realized they need- ed a creative solution to repair their unique roof. Clausen says the county wanted to preserve the mural, but a long-lasting, durable roof was a top priority. “They definitely wanted a high-quality roof,” he says.

The project faced other constraints, in addition to the painted surface. The administration building is located in a prominent spot in the middle of downtown Grand Rapids, near the museum dedicated to former President Gerald Ford and adjacent to two major expressways. No interruption of normal activities could be allowed—either on the plaza or in the building supporting the Calder mural. And—perhaps most challenging—Great Lakes Systems was given three weeks to complete the project before the inaugural ArtPrize competition would take over much of downtown Grand Rapids. That meant the team would have two weeks for the roof installation, leaving one week to repaint the mural. This was less than half the time usually required for a comparable project.

For Clausen, one part of the project was easy. He had used EPDM membrane on a variety of prior projects for county buildings, and county officials had been pleased with the results, especially the balance of cost-effective installation and long service life. “We looked at other membranes, given the nature of the project, but we always came back to EPDM, given its 30-year plus lifespan,” Clausen notes. “If we have to paint again, that’s OK, but we don’t want to reroof.”

For this project, fully adhered EPDM, as well as insulation ad- hered to the concrete deck, offered two important benefits: a painting surface that would be appropriate for the repainted mural and minimal noise (compared to a mechanically attached system) so that work in the building below could continue as normal.

Great Lakes Systems used 60-mil EPDM to replace the aging modified bitumen system. The 18,500-square-foot roof was backed by two layers of 2-inch polyiso insulation, and the EPDM membrane was covered with an acrylic top coat to provide a smooth surface for the new painting. The top coat matched the three colors of the mural—red, black and white. The red was a custom tinted acrylic paint deemed to be compatible with the EPDM membrane and the black and white acrylic top coat provided by the EPDM manufacturer.

Great Lakes Systems took aerial photos of the existing roof, created a grid of the roof and—scaling the design from the photos—recreated the mural exactly, a sort of large-scale paint- by-number approach.

Great Lakes Systems took aerial photos of the existing roof, created a grid of the roof and—scaling the design from the photos—recreated the mural exactly, a sort of large-scale paint- by-number approach.

A BEAUTIFUL ROOF

The Great Lakes Systems’ team applied a creative approach to recreate the mural, adhering carefully to the original design. Because the county used the same colors on its street signs as in the original mural, color codes were available to allow the team to access colors that were identical to those specified by Calder.

Great Lakes Systems took aerial photos of the existing roof, created a grid of the roof and—scaling the design from the photos—recreated the mural exactly, a sort of large-scale paint-by-number approach. The most intricate part of the painting was the layout. Although some free-hand painting had to be done along several jagged edges, the team painstakingly followed the scaled grid and applied chalk lines to outline the original design on the repaired roof. Roller applications were used at the border of the chalk lines to define individual spaces and mark the stopping and starting points for the different colors. Following this “outlining” work, the large areas were sprayed to complete the painting process. The three-man painting crew finished the job with several days to spare, helped along with very good weather.

The roofing project was an informal jump-start toward reimagining uses for Calder Plaza. This past summer, Grand Rapids residents were given the opportunity to voice their preferences for new landscaping for the plaza, provide input for activities that would attract more families and children, and generally make the space more pedestrian friendly. The new proposals are generating excitement and enthusiasm in Grand Rapids. As the new plans become reality, the citizens of Grand Rapids can be assured the Calder mural and the roof supporting it will be doing their part to add beauty and shelter to Calder Plaza and its buildings for decades to come.

Roof Materials

60-mil EPDM: Firestone Building Products Co.
2-inch Polyiso Insulation: Firestone Building Products
Black and White Acrylic Top Coat: Firestone Building Products

PHOTOS: Great Lakes Systems

Nothing Boosts Lead Generation Like a Strong SEO Plan and Solid Rankings

What better way to attract potential customers for your roofing business than to rank at the top of Google, Bing and Yahoo for your products and services! Ranking organically in “search” is the ultimate form of inbound lead generation.

However, common laments heard in business circles are that SEO, or search engine optimization, is dead, it no longer works or it just costs too much to get results. All three statements couldn’t be further from the truth. Business people know that paid ads are a quick way to show up at the top of the search engine results pages, which are commonly called SERPs. But research shows that most savvy searchers bypass these paid ads at the top and opt to click on the first few organic results.

Many so-called SEO experts have given up on the tried-and-true SEO tactics in favor of other avenues, like social media, to direct relevant traffic. Although social media has its place in an online marketing strategy, nothing truly helps boost lead generation like a strong SEO plan and solid rankings. Every business needs to take advantage of the potential results SEO may achieve by doing what it takes to compete and start collecting that low-hanging fruit of new customers on the web.

Unfortunately, hundreds of thousands of websites are created every single year, making it more difficult to rank well—in the top 10 spots on page one of a SERP. Getting those coveted, top spots on search engines for related searches may seem inaccessible, but there are some SEO strategies that can help.

Because the original algorithms to rank websites on SERPs was easily manipulated, constant changes were made to increase the complexity of the algorithms and weed out SPAM websites that deliver little to no value to users. The constant evolution of these algorithms has made it a real necessity for every business to have a serious, ongoing SEO strategy. As business owners, we all know that worthy achievements rarely come without deliberate and concerted efforts. The good news is there are some basic on-page SEO tactics that can deliver real results in today’s competitive internet landscape.

Focus Keywords

The foundation of ranking well with a website should center around a list of words or phrases that are targeted. These keywords should be relevant to the business, brand or service. It helps to have a specific keyword or phrase in mind for each and every web page that is created. For instance, a roofing company may have a separate page for “roof repairs”, “new roof” and “replacement roof”. By focusing the keywords in each page around each specific topic, the chances of ranking for searches that include those words increases.

Be sure to include information about your service area, naming the towns in which you work. The keywords or phrases that are targeted will ultimately determine the focus of the content, meta tags and the entire architecture of a website. Start with the keywords you hope to rank for and build content around them.

Instead of trying to rank for generic terms, like “roofer” or “roofing”, which have lots of competition, try ranking for long-tail keyword phrases, like “new roof in Stockbridge Massachusetts” or “roofing repair contractor near Chicago” for more achievable results. Long-tail keyword phrases should be highly valued because they give businesses a better chance at reaching customers that are close to the point-of-purchase. Being more specific with keyword phrases will yield less competition and higher results for the pages. Remember, potential customers who use these more specific terms in their search are more likely to convert into paying customers.

Pages: 1 2

Contemporary Materials Are Used to Preserve a Historically Significant 1889 House

In my capacity as a historic preservation contractor and consultant, I am often afforded the opportunity to become involved in exciting and challenging projects. Recently, my firm was awarded the contract to restore the clay tile roof turrets at Boston’s Longy School of Music’s Zabriskie House. Now part of Bard College, Longy School’s Zabriskie House is actually the historic Edwin H. Abbot House with a sympathetically designed addition built in the 1980s. The deteriorated condition of the original house’s turrets, as well as lead-coated copper gutter linings and masonry dormers, had attracted the attention of the Cambridge Historic Commission, and a commitment to the proper restoration of these systems was struck between the commission, building owner and a private donor.

The hipped roof turret on the building’s primary façade was in need of serious attention.

The hipped roof turret on the building’s primary façade was in need of serious attention.

BUILDING HISTORY

Before I can specify historically appropriate treatments, I need to don my consultant’s cap and dig into the history of a building to best understand its evolution. Developing the background story will typically answer questions and fill in the blanks when examining traditional building systems. An 1890 newspaper clipping held by the Cambridge Historic Commission re- ports that “[t]he stately home of Mr. Abbot, with its walled-in grounds, on the site of the old Arsenal, promises to be the most costly private dwelling in the city.” An examination of records held by the Massachusetts Historical Commission and from the Library of Congress’ Historic American Buildings Survey reveals that the firm of Longfellow, Alden & Harlow designed the Richardsonian Romanesque portion of the building and that Norcross Brothers Contractors and Builders was the builder of record.

Alexander Wadsworth Longfellow Jr. (of Longfellow, Alden & Harlow) was the nephew of the famous poet Henry Wadsworth Longfellow and an important figure in U.S. architectural history. After graduating from Harvard University in 1876, he studied architecture at the Massachusetts Institute of Technology and the École des Beaux-Arts in Paris, after which he worked as a senior draftsman in Henry Hobson Richardson’s office. After Richardson’s death in 1886, Longfellow partnered with Frank Ellis Alden and Alfred Branch Harlow to found the firm of Longfellow, Alden & Harlow. With offices in Boston and Pittsburgh, the firm designed many important buildings, including the Carnegie Library in Pittsburgh and the City Hall in Cambridge.

Norcross Brothers Contractors and Builders was a prominent 19th century American construction company, especially noted for its work, mostly in stone, for the architectural firms of Henry Hobson Richardson and McKim, Mead & White. Much of the value of the Norcross Brothers to architectural firms derived from Orlando Norcross’ engineering skill. Although largely self- taught, he had developed the skills needed to solve the vast engineering problems brought to him by his clients. For example, the size of the dome at the Rhode Island Capitol was expanded very late in the design process, perhaps even after construction had begun, so that it would be larger than the one just completed by Cass Gilbert for the Minnesota Capitol. Norcross was able to execute the new design.

BUILDING STYLE

The Edwin Abbot House is an interesting interpretation of the Richardsonian Romanesque style. Whereas the great majority of such buildings feature rusticated, pink Milford granite in an ashlar pattern, trimmed with East Longmeadow brownstone, Longfellow created a unique spin for Mr. Abbot. Although the building is trimmed with brownstone, the field of the walls features coursed Weymouth granite of slightly varying heights. The motif of orange, brown and golden hues of the stone is continued in the brick wall surrounding the property.

Scaffolding was erected that would make the otherwise dangerous, heavy nature of the work safe and manageable.

Scaffolding was erected that would make the otherwise dangerous, heavy nature of the work safe and manageable.

The roof is covered in a flat, square orange-red clay tile. Richardsonian Romanesque buildings are almost exclusively roofed in clay tile; Monson black slate; Granville, N.Y., red slate; or some combination thereof. It should be noted that because their need for stone was outpacing the supply, Norcross Brothers eventually acquired its own quarries in Connecticut, Georgia, Maine, Massachusetts and New York.

The roof framing system of steel and terra-cotta blocks is relatively rare but makes perfect sense when considered in context with the latest flooring technologies of the era. A network of steel beams was bolted together to form the rafters, hips and ridges of the frame. Across each is welded rows of double angle irons (or inverted T beams). Within these channels, in beds of Portland cement, the terra-cotta block was laid. The tile was then fastened directly to the blocks with steel nails. Because of the ferrous nature of the fasteners, the normal passage of moisture vapor caused the nails to rust and expand slightly, anchoring them securely in place. Whether this element of the design was intentional or simply fortunate happenstance, the result made for a long-lasting roof.

What doesn’t last forever in traditional slate and clay tile roofing systems is the sheet-metal flashing assemblies. Over the years, there must have been numerous failures, which led to the decision to remove the clay tiles from the broad fields of the roof and replace them with red asphalt shingles in the 1980s. Confronted with the dilemma of securing the shingles to the terra-cotta substrate, a decision was made to sheathe the roof with plywood. Holes were punched through the blocks and toggles used to fasten the plywood to the roof. In an area where the asphalt shingles were removed, more than 50 percent of the plywood exhibited varying degrees of rot caused by the normal passage of vapor from the interior spaces.

Fortunately, the turrets had survived the renovations from 30 years before. A conical turret in the rear and an eight-sided hip-roofed turret on the north side needed only repairs which, while extensive, did not require addressing issues with the substrate. The 16-sided turret on the primary façade of the building was in poor condition. Over the years, prior “repairs” included the use of non-matching tiles, red roofing cement, tar, caulk and even red slate. A scaffold was erected to allow safe, unfettered access to the entire turret and the process of removing the tile began. Care was taken to conserve as many tiles as possible for use in repairing the previously described turrets.

As the clay-tile roof covering was removed, the materials of the substrate were revealed and conditions were assessed.

As the clay-tile roof covering was removed, the materials of the substrate were revealed and conditions were assessed.

The substrate was examined closely and, save for thousands of tiny craters created by the original nails, found to be sound. A new system had to be devised that could be attached to the terra-cotta blocks and allow for the replacement tiles to be securely fastened, as well as resist the damaging forces of escaping moisture vapor. Cement board, comprised of 90 percent Portland cement and ground sand, was fastened to the blocks with ceramic-coated masonry screws. The entire turret was then covered with a self-adhering membrane. The replacement tiles were carefully matched and sourced from a salvage deal- er in Illinois and secured with stain- less-steel fasteners. The flat tiles, no longer manufactured new, are referred to as “Cambridge” tiles for their prevalence on the roofs of great homes and institutional buildings in and around Cambridge.

CONTEMPORARY UPDATES

Although I typically advocate for the retainage of all historic fabric when preserving and restoring traditional building systems, there are exceptions. In the case of the Abbot House roof, we encountered “modern” technologies that pointed us toward contemporary means and methods. Rusting steel nails in the terra-cotta block were brilliant for initial installation but seemed ill conceived for a second-go-round. Instead, using non-ferrous fasteners and a new substrate that is impervious to moisture infiltration will guarantee the turret’s new service life for the next 125 years or more.

ROOF MATERIALS

Self-adhering Membrane: Grace Ice & Water Shield
Masonry Anchors: Tapcon
Cement Board: James Hardie
Stainless-steel Roofing Nails: Grip Rite
Replacement Tiles: Renaissance Roofing Inc.

PHOTOS: Ward Hamilton

Maximize Risk Transfer to Your Commercial General Liability Insurance

Roofing contractors face potential liability from numerous aspects of their businesses, including employee-operated company vehicles and equipment; work-related injuries; property and equipment damage; “disappearing” materials; defective work and materials; and a multitude of employment issues, such as wrongful termination claims. All reputable contractors protect themselves and others by purchasing Commercial General Liability (CGL) Insurance. The scope of available coverage runs from basic policies to wide-ranging “multi-peril” policies, which bundle multiple coverages to address a number of potential risks. A multi-peril policy for roofing contractors may include coverage for damage arising from defective work, operation of vehicles or equipment, worker’s compensation, employment practices and even employee theft.

Insurance simply represents the transfer of risk from the insured to the insurance company. Taking a proactive approach to understanding the insurance you purchase allows you to maximize that risk transfer or at least know where you bear the majority of risk.

The Basics

A CGL insurance policy generally consists of three primary sections:

  • The insuring agreement.
  • The exclusions.
  • The endorsements.

The insuring agreement defines what the policy covers and is generally written quite broadly. Virtually all CGL insurance policies require that such property damage or personal injury result from an “occurrence,” typically defined as “an accident, including continuous or repeated exposure to substantially the same general harmful conditions”. Many of the terms within the insuring agreement are specifically defined for purposes of the policy and require analysis, depending on the claim asserted and the particular coverage implicated.

The exclusions are simply that— claims and/or damages the insurance company will not cover. For example, CGL insurance policies commonly contain exclusions for “Contractual Liability”, defined as “bodily injury or property damage the insured is obligated to pay by reason of the assumption of liability in a contract or agreement”. Since many subcontracts include express indemnification clauses, this can be a major area of concern for the contractor.

Endorsements are documents attached to a policy that amend the terms in some way and can expand or restrict coverage or even modify the definitions. One common misperception is the belief that endorsements are synonymous with exclusions. To the contrary, it is not uncommon for an endorsement to narrow the scope of an exclusion or eliminate an exclusion entirely. Endorsements can be used to tailor a policy to a particular industry or trade, and insurance companies use them to modify standard Insurance Services Office (ISO) policies to comport to their particular philosophy, such as cancellation and non-renewal provisions or requiring binding arbitration to settle coverage disputes. Endorsements are usually identified by description and form number as part of the Declarations Page.

There are common Endorsements that result in additional exclusions. One of particular concern to any contractor is the “Independent Contractors and Subcontractors Limitation”, which provides that claims for bodily injury or property damage caused by independent contractors/subcontractors used by the insured are not covered unless that independent contractor/subcontractor maintains its own insurance coverage with limits equal to the insureds and names the insured as an Additional Insured on its policy.

To limit your personal exposure, it is imperative you do not ignore the Endorsements! It is an important part of your policy and you need to understand the terms.

Duty to Defend Versus Duty to Indemnify

An insurance policy creates two separate and distinct obligations for the insurance company: the duty to defend and the duty to indemnify.

The duty to defend consists of the insurance company’s obligation to hire counsel to defend the insured in response to a claim. That obligation is not
dependent upon the insured’s liability but whether the allegations made by the plaintiff states a claim potentially triggering coverage. The duty to defend
exists even if the claim is groundless, false or fraudulent.

The duty to indemnify is the insurance company’s obligation to pay the successful plaintiff when that claim falls within the scope of the insurance policy.
In the insuring agreement, the insurer promises to “pay those sums that the insured becomes legally obligated to pay as damages because of ‘bodily injury’ or ‘property damage’ to which this insurance applies.”

It’s often said that the duty to defend is broader than the duty to indemnify. The carrier’s duty to defend exists when the claim potentially triggers overage, while the duty to pay exists only when the insured is obligated to pay damages and the claim falls within the coverage provided by the policy.

Pages: 1 2

NRCA’s ProForeman Certificate Program Helps Field Leaders Become Excellent Foremen

Brian Draper completes the ProForeman Certificate Program.

Brian Draper completes the ProForeman Certificate Program.

When the Rosemont, Ill.-based National Roofing Contractors Association (NRCA) debuted its ProForeman Certificate Program in 2014, Brian Draper, Superintendent at Queen City Roofing, Springfield, Mo., was the first to apply for the program.

Because he was the only participant from Queen City Roofing, Draper navigated the elements of the program completely on his own. He enjoyed the support of his boss, the company owner, Larry Stock, who is a big believer in training and education. It was no small undertaking for either of them.

The ProForeman Certificate Program is a robust, multi-faceted program aimed at helping field leaders become excellent foremen. It also enables them to become company ambassadors, as well as well-rounded and knowledgeable employees within the roofing industry as a whole. The six areas of emphasis are general education, roofing technology, construction/business practices, leadership, safety and training others.

Roofing Technology

The roofing technology portion of the certificate program required Draper to complete two programs about codes, write a recent job report and watch a technical issues webinar conducted by Mark Graham, NRCA’s vice president of technical services. The purpose of the codes programs is to expose field managers to their complexity and purpose rather than for participants to learn all the codes that affect roofing. Similarly the technical webinar is a snapshot of issues roofing contractors have to deal with every day. Each of these three programs help turn field managers, like Draper, into better-educated employees who can appreciate the complexities of their industry and, therefore, be better representatives of their companies and more understanding team members.

Draper’s recent job report discussed aspects of a TPO installation. He was required to anticipate methods, safety concerns and common problems, as well as share specific concerns for one job. Because he is a more experienced field manager, he was able to accurately demonstrate his knowledge and experience.

Construction/Business Practices

This segment of the certificate program is designed specifically to help field managers appreciate the roles and concerns of management. Draper reported aspects of these segments to be helpful to him and some others in the office. Three elements comprise this section—a webinar about customer service, a webinar about foreman daily planning and a company-based activity during which participants shadow several key management employees—from which participants learn the responsibilities and concerns of many office employees. For instance, a “daily huddles” webinar helps field managers appreciate the financial picture of the company, seen through the lenses of a job. It explains the impact a field manager’s leadership can have on a job and the company’s bottom line.

Leadership

ProForeman leadership components are the heart of the program. They are comprised of two day-long, in-person programs and two follow-up webinars. Each of these elements is aimed at teaching leadership awareness and skills.

NRCA’s premise is that most field managers already are excellent managers. They know what it takes to successfully install a roof system and are drive to achieve goals. Where roofing industry field managers often lack awareness is how to effectively influence the people who work for them.

Queen City Roofing is lightyears ahead of many companies. According to Draper, Stock is committed to creating an atmosphere in which people enjoy their jobs and want to come to work, and he wants people to be committed to customer service. To that end, being part of the ProForeman Certificate Program was not Draper’s first exposure to leadership concepts. He has been talking to the foremen at Queen City Roofing about concepts like this for some time. NRCA’s For Foremen Only programs, which are part of the certificate program under the leadership section, helped provide Draper with additional material to discuss with the company’s field leaders. Draper notes that over time he has seen foremen come to treat their crews differently, and he reports that hardly anyone manages by yelling anymore.

Safety

It was the position of NRCA legal counsel that no one should be able to earn the ProForeman certificate without having expertise in safety. To that end, there are more requirements in this section than any other. When the program first debuted, NRCA required a roofing-specific OSHA 10-hour card, which could be substituted by a non-specific 30-hour card. There was lots of confusion over the way this was worded, so the requirement was changed to simply require an OSHA 30-hour card. Although a roofing-specific 10-hour can still satisfy, the idea is that ProForeman certificate holders be “above and beyond” when it comes to safety.

Other elements in this section include a webinar about what it means to be a competent person, a fall-protection video and assessment, job-site inspections of current jobs and a full-day NRCA program about fall protection: Roofing Industry Fall Protection A to Z.

Draper successfully completed all the requirements. In a conversation with him, he stated that Queen City Roofing experienced a transformation in its safety culture four to five years ago. Since that time, leadership and safety have taken a front seat. Draper has embraced learning and training as a way to keep these things in front of the employees at Queen City Roofing.

Training Others

The final section of the certificate program focuses on helping field managers to become excellent trainers for their employees. Not many companies have someone skilled in being a trainer, though all foremen fill this role to some extent. The intent behind these elements is to help foremen be more comfortable in their role as teachers, which is a huge advantage to the individual and the company.

The three items Draper was required to complete in this section were the following:

  • Watch an online module about what it means to be an excellent trainer.
  • Record a video of himself doing a teaching demonstration, such as part of a safety talk (a participant who is a current authorized CERTA trainer does not need to do this exercise).
  • Teach an actual classroom training session.

The classroom training exercise is an opportunity to train new (or newer) field employees on the basics of roofing. The session includes classroom time, demonstration and hands-on activities. NRCA recognizes roofing involves a lot of on-the-job training but does not believe sending new employees up on to the roof right away to learn everything is the best approach. It often frustrates busy foremen, slows down crews that need to work around what they perceive to be dead weight, and tends to weed out workers who might be highly successful if they were provided with a more structured or methodical way of learning a new skill.

Draper reported this classroom training experience to be positive for him and those who participated in the class. Queen City Roofing celebrated participants’ completion by awarding certificates and making a splash of their successes. The company is committed to using this program with future new employees.

First of Many

Draper was the first person to complete the NRCA ProForeman Certificate Program and it helped solidify and improve his skills in many existing Queen City Roofing initiatives. In many ways, Draper was ahead of the curve, coming from a company with an existing commitment to leadership development and a thriving safety culture. It was NRCA’s pleasure to award the jointly held certificate to Draper and Queen City Roofing. NRCA mailed the certificate and, with it, some award items to Draper, such as a Carhartt vest and Thermos mug with the ProForeman logo. NRCA does not expect certificate holders to attend the International Roofing Expo, but finishers are recognized at the award ceremony by name and company.

Learn More
To learn more about the ProForeman certificate program, email Janice Davis at jdavis@nrca.netor Amy Staska at astaska@nrca.net.

The Integration of Roof and Brick Requires Concise Details

PHOTO 1: The through-wall flashing stainless-steel drip can be observed projecting nicely from the wall—but the termination of the roof base flashing more than 1-inch below resulted in a section of the brick wall that allows water to pass into the wall below the through-wall flashing and behind the roof base flashing, resulting in the damage seen in Photo 2.

PHOTO 1: The through-wall flashing stainless-steel drip can be observed projecting nicely from the wall—but the termination of the roof base flashing more than 1-inch below resulted in a section of the brick wall that allows water to pass into the wall below the through-wall flashing and behind the roof base flashing, resulting in the damage seen in Photo 2.

Projects are perceived to be successful by their ability to prevent disturbance from weather, including rain. Have you ever heard two architects talking about Frank Lloyd Wright?

“What a genius! His spatial conception is magnificent, even after 100 years.”

“But all his buildings leak!”

I used to give a talk to University of Illinois architecture students in which I told them the quickest way to go out of business is to be sued. The quickest way to be sued is to have a building allow moisture intrusion. If he were alive today, Frank Lloyd Wright—God rest his soul—would be in jail (and a few current architects may be well on their way). Owners are not very kind when their “babies” leak.

Many roof termination interfaces are never even thought about by designers and are left to the roofing contractor to work out. This is not a recommended practice. One such condition—that every architect should be able to detail—is how the roof base flashing terminates at a masonry wall that has through-wall flashing and weeps at the base of the wall above the roof. I believe so fervently that architects should be proficient in detailing these conditions that I believe it should be required to procure their license.

WHY THE IMPORTANCE

The interface of roof base flashing and masonry through-wall systems occurs on a majority of commercial construction projects. If this transition is not performed correctly, moisture intrusion behind the roof base flashing to the interior will occur (see Photo 2). When this occurs, besides angering owners, it befuddles the architect. Photo 1 (left) shows a nice through-wall flashing drip extended out from the wall, weeps and roofing terminated with a termination bar and sealant. What could be wrong?

PHOTO 2: Moisture intrusion at the base of this wall was the result of water circumventing the through-wall flashing and roof base flashing termination seen in Photo 1. A big concern with conditions, such as this, is the propensity of the materials to promote mold growth.

PHOTO 2: Moisture intrusion at the base of this wall was the result of water circumventing the through-wall flashing
and roof base flashing termination seen in Photo 1. A big concern with conditions, such as this, is the propensity of the materials to promote mold growth.

The exposed brick above the termination bar and below the stain- less-steel drip of the through-wall flashing is susceptible to water flowing down the surface of the brick. Water passing through the brick above is supposed to be weeped out; however, at the exposed brick above the termination bar, the water moves into the wall and has nowhere to go but inward.

The cost to repair these conditions can be, depending on the conditions, expensive. Repairs often require brick removal and through-wall flashing mitigation. In this particular case, be- cause there is a stainless-steel drip, my team recommended a stainless-steel counterflashing be pop-riveted to the drip and extended over the termination bar.

CHALLENGES

Why is the interface of roof base flashing and masonry through-wall systems so difficult for architects and roof consultants to detail? I believe it is because they have no clue it needs to be detailed as an interface, especially because detailing of appropriate through-wall systems is so sporadic. I endeavor in this article to change at least the knowledge part.

The detailing of this condition not only requires the ability to interface two building systems, but also requires considerable time to ensure specification of wall sectional details and roofing details are appropriately placed where the responsible trades will see them.

PHOTO 3: Still under construction, the stainless-steel counterflashing has been installed. The roof base flashing will terminate below the stainless-steel counterflashing receiver. Hutch prefers brick below the through-wall flashing and above the roof deck, though the masonry mortar joints below the through-wall flashing should have been struck flush.

PHOTO 3: Still under construction, the stainless-steel counterflashing has
been installed. The roof base flashing will terminate below the stainless-steel counterflashing receiver. Hutch prefers brick below the through-wall flashing and above the roof deck, though the masonry mortar joints below the through-wall flashing should have been struck flush.

NEW CONSTRUCTION

New construction provides us a clean slate to “do it right the first time”. The first order of business is to determine the height of the base flashing. This can be tricky with tapered insulation and slope structures with saddles. Let’s consider the following examples (see Detail 4, page 3):

EXAMPLE 1
We are dealing with a flat roof, tapered insulation, cover board and bead-foam insulation in ASHRAE Climate Zone 5, which has an R-30 minimum.

  • The roof drain is 32-feet away from the wall. Code requires 5.2 inches of insulation at 4 feet from the drain, so let’s assume 5 inches at the drain.
  • 1/4-inch tapered starts at 1/2 inch at 32 feet. That’s 8 inches, plus the starting thickness of 1/2 inch, which equals 8 1/2 inches.
  • Cover-board thickness is 1/2 inch.
  • Bead foam thickness is 3/16 inch for each layer. Let’s assume five layers, so 1 foot of bead foam.
  • Thus, the surface of the roof at the wall will be 15 inches above the roof deck.

Because you would like to work at the masonry coursing level and given that concrete masonry units (CMU) are nominal 8 inches, you are looking at placing the through-wall flashing 24 inches above the roof deck.

This 24-inch dimension of where to place the through-wall flashing needs to be placed on the building section and/or wall section because the mason, which will be onsite prior to the roofing contractor, will need to know this information.

This 24-inch height begs another termination question: What occurs at the roof edge with this height? Hold that thought for now. Terminations at intersections will be discussed in future articles.

Pages: 1 2 3

There Is Evidence Cool Roofs Provide Benefits to Buildings in Climate Zones 4 through 8

FIGURE 1: Reflective roof requirements in ASHRAE 90.1 and IECC only apply in Climate Zones 1 through 3, shown here on the ASHRAE Climate Zone Map. SOURCE: U.S. Department of Energy

FIGURE 1: Reflective roof requirements in ASHRAE 90.1 and IECC only apply in Climate Zones 1 through 3, shown here on the ASHRAE Climate Zone Map. SOURCE: U.S. Department of Energy

Reflective roofs are a tried and true way to improve building energy efficiency and comfort, generate net energy savings and help mitigate summer urban heat islands. Reflective roofs work by reflecting solar energy off the roof surface, rather than absorbing the energy as heat that can be transmitted into the building and surrounding community.

The simple act of switching from a dark to a light-colored roof surface has a number of benefits. Buildings protected by these types of roofs require less energy to cool and help building owners and residents save money. Cool roofs on buildings without air conditioning can save lives during heat waves by lowering indoor temperatures. Cooler city air is safer to breathe and less polluted, which makes cities more livable and less vulnerable during heat waves. Increasing the reflectivity of urban surfaces can also offset the warming effect of green- house gases already in the atmosphere and help us address the challenges of climate change. Taken together, these benefits are worth billions of dollars to the growing number of people that live and work in U.S. cities.

The energy-savings case for cool roofs in warm climates is clear. Widely adopted model building-code systems, ASHRAE and the IECC, address roof reflectivity. ASHRAE 90.1-1999 added a credit for highly reflective roofs with IECC allowing compliance via ASHRAE in 2003. ASHRAE 90.1-2010 added reflectivity requirements for new and replacement commercial roofs in Climate Zones 1 through 3. IECC added the same requirements in its 2012 version. (Figure 1 shows the ASHRAE climate zone map for the U.S.)

There is, however, an ongoing debate about whether cool roofs deliver net energy benefits in northern climates that experience cold winters and warm to hot summers (Climate Zones 4 through 8). Do reflective roofs remain beneficial as the cold weather season kicks in? The same properties that allow reflective roofs to keep buildings cooler in the summer may also cause them to make buildings colder in the winter. Theoretically, buildings with cool roofs could require more energy to reach a comfortable temperature in winter—a consequence known as the “winter heating penalty.” Furthermore, building codes tend to require more roof insulation in colder climates than warmer climates, potentially reducing the energy-efficiency benefits of roof surface reflectivity.

FIGURE 2A: Annual energy-cost savings ($1 per 100 square meters) from cool roofs on newly constructed, code-compliant buildings with all-electric HVAC. SOURCE: Energy and Buildings

FIGURE 2A: Annual energy-cost savings ($1 per 100 square meters) from cool roofs on newly constructed, code-compliant buildings with all-electric HVAC.
SOURCE: Energy and Buildings

The “winter heating penalty” and the impact of insulation are considerations when installing reflective roofs in some cold climates, but their negative effects are often greatly exaggerated. The sun is generally at a lower angle and days are shorter in winter months than summer months. In fact, in northern locations winter solar irradiance is only 20 to 35 percent of what is experienced in summer months, which means the sun has a reduced impact on roof surface temperature during the winter. Heating loads and expenditures are typically more pronounced in evenings, whereas the benefit of a darker roof in winter is mostly realized during daylight hours. Many commercial buildings require space cooling all year because of human activity or equipment usage, thereby negating the little—if any—heating benefit achieved by a dark roof.

Two new studies, along with decades of real-world examples from the marketplace, indicate that reflective roofs are an effective net energy (and money) saver even in our coldest cities.

SNOW’S IMPACT

In a study recently published in Energy and Buildings, researchers from Concordia University in Montreal evaluated the energy-consumption impact of adding cool roofs to a number of retail and commercial buildings in Anchorage, Alaska; Milwaukee; Montreal; and Toronto. The researchers looked at older, less insulated building prototypes, as well as newer buildings built with code-compliant levels of insulation. Unlike earlier work evaluating the impact of roof reflectivity on building energy consumption in cold climates, this new analysis also accounted for the impact of snow on the roof during winter months.

FIGURE 2B: Annual energy-cost savings ($1 per 100 square meters) from cool roofs installed on older buildings with all- electric HVAC. SOURCE: Energy and Buildings

FIGURE 2B: Annual energy-cost savings ($1 per 100 square meters) from cool roofs installed on older buildings with all- electric HVAC.
SOURCE: Energy and Buildings

Snow has two impacts on the roof that are relevant to understanding the true impact of roof surface reflectivity on energy consumption. First, snow helps insulate the roof. As a porous medium with high air content, snow conducts less heat than soil. This effect generally increases with snow density and thickness. Second, snow is white and, therefore, reflective. At a thickness of about 4 inches, snow will turn even a dark roof into a highly reflective surface (approximately 0.6 to 0.9 solar reflectance).

When snow is factored in, the benefits of cool roofs in cold climates be- come much clearer. Figure 2a shows the net energy savings and peak electricity reduction with and without snow for cool roofs installed on newly constructed, code-compliant buildings, assuming all-electric HVAC. Figure 2b shows savings from cool roofs installed on existing, older vintage buildings. The paper, available from the journal Energy and Buildings also includes results with gas HVAC systems.

INSULATION’S EFFECTS

Another argument often heard against reflective roofing in cold climates is that buildings in northern climates tend to have higher levels of roof insulation that reduce or negate the energy-savings impact of roof surface color. A new field study and model analysis of black and white roof membranes over various levels of insulation by the City University of New York and Princeton University and Princeton Plasma Physics Lab, the latter two of Princeton, N.J., clearly rebuts the “insulation versus reflectivity” tradeoff.

Pages: 1 2