An EPA Proposal to Reduce Ground-level Ozone Will Affect the Roofing Industry

On Nov. 26, 2014, the Washington, D.C.-based U.S. Environmental Protection Agency announced a proposal to reduce the National Ambient Air Quality Standard (NAAQS) for ground-level ozone. The existing National Ozone Standard, last strengthened in 2008, sets the acceptable level of ozone at 75 parts per billion (ppb); the proposal calls for lowering that level to 65-70ppb, or even as low as 60ppb. The National Association of Manufacturers, Washington, has called the new proposed standard the “the most expensive regulation in history,” and its passage could result in widespread effects felt across the nation and a wide array of industries, including roofing.

Ozone NAAQS and Nonattainment

Tropospheric (ground-level) ozone is one of six “criteria” pollutants regulated by the EPA, pursuant to the 1990 Clean Air Act, because it has negative human-health impacts and can be damaging to vegetative growth. Ozone is formed when volatile organic compounds (VOCs) and nitrogen oxides (NOx) combine with sunlight. Significant anthropogenic (manmade) sources of VOC and NOx emissions include industrial and manufacturing facilities, vehicle exhaust, gasoline vapors, and solvents used in consumer and commercial coatings and paints.

The ozone NAAQS sets permissible ozone levels; those states and regions that do not meet those thresholds are designated as “nonattainment” areas. A nonattainment designation requires that the state develop and submit a State Implementation Plan (SIP) to the EPA, which outlines the steps that will be taken to reach and maintain compliance, or “attainment”. The steps that a state may take to work toward ozone attainment are varied but often include control measures over manufacturing and industrial processes; regulations aimed to reduce VOC emissions from paints, coatings, and manufacturing processes; or voluntary measures, such as programs that encourage the use of mass transit to reduce vehicle usage.

Additionally, the nonattainment designation comes with specific mandates from the EPA. These include tougher permitting requirements for new or expanding facilities, potential loss of federal highway and transit funding, EPA oversight in permitting, and requirements to “offset” any new emissions sources by reducing emissions in existing operations or by purchasing emissions credits from others.

Many states and regions, including California and the majority of the Northeast’s I-95 corridor, are still working to comply with the 2008 ozone standard’s 75ppb level. The proposal to lower the existing ozone standard to within the range of 65-70ppb will result in a significant increase in nonattainment areas across the country, which will in turn result in growth of stationary source restrictions and state-level regulations as states develop SIPs for achieving lower ozone levels.

The effects of a stricter ozone standard will be felt across the nation and in a wide variety of industries. “Background ozone”, or the ozone levels that would exist regardless of the presence of industry, is 30ppb or higher in most areas. For such regions, lowering the standard from 75ppb to 65ppb would represent a mandate to reduce anthropogenic ozone by more than 20 percent. Additional reductions may prove difficult to achieve and costly, especially for those areas of the country that have already implemented control measures to achieve attainment with the 2008 Standard.

Effects on the Roofing Industry

One area of particular significance to the roofing industry will be VOC regulations for architectural and industrial maintenance (AIM) coatings, as well as for industrial adhesives and sealants, which are used in the application of certain roof systems and for continued maintenance and protection of many roofs. The VOC content for a variety of AIM coatings is regulated on the national level by the EPA. Additionally, there are more stringent VOC regulations in place today across the majority of the Northeast, in several Great Lakes states, and in California’s 35 air districts for AIM coatings and adhesives and sealants as part of those states’ and regions’ SIPs for reaching attainment on existing ozone standards.

While there are regulatory bodies, such as the California Air Resources Board, Ozone Transport Commission and the Lake Michigan Air Directors Consortium that provide guidance on ozone attainment, it is ultimately left up to the states (and in the case of California, individual air districts) to develop and implement VOC regulations. As such, VOC regulations vary from state to state and region to region with rules that contain disparate VOC content limits, compliance dates, and record-keeping and reporting requirements, which can make compliance highly challenging.

Purpose of VOCs in Roof Coatings

VOCs are included in a wide array of coatings for several reasons. Solvent-based coatings can be used as an alternative to waterborne technologies, especially where freeze/thaw resistance and product application and storage in cooler climates or in winter months is required. VOCs are used to dissolve solids to keep coatings in a liquid phase, allowing for them to be applied prior to the solvent flashing out and the product curing to form a solid layer. Furthermore, coatings may be formulated with VOCs because of the solvents’ ability to soften the substrate that the coating is being applied to, improving the application and ultimate performance of the coating.

As new, stricter VOC regulations are introduced and VOC content limits are lowered in different roof coating, adhesive and sealant product categories, several negative consequences may occur. First, it may become more difficult to apply the product or to apply the product at an appropriately thin layer. Additionally, the performance of the product may be negatively impacted, which could result in the need for additional product application throughout the lifetime of the roof or, in extreme cases, a reduced life-span of the roof. Although there are many excellent waterborne technologies available, the use of water-based coatings may not be an acceptable alternative in all situations or in all roof systems.

The Path Forward

The ozone NAAQS’s publication in the Federal Register begins a 90-day comment period, which will be supplemented by several public hearings in the early months of 2015. Should the rulemaking continue forward and a lower ozone standard be approved, the EPA will begin designating attainment and nonattainment areas, which will start the process for the development of SIPs containing a host of new regulations across the country.

For manufacturers, specifiers and contractors alike, an influx of VOC regulations will prove challenging. Formulators will be forced to create high-performing products using lower-solvent content or through the use of exempt solvents; applicators will need to be aware of the rules in place to ensure they are applying compliant products; end-users will need to learn that products they have had in the past may no longer be available. Even under today’s ozone standard, keeping apace of the multitudinous and constantly changing VOC regulations is a large task. EPA’s final determination of a new ozone standard could prove to have significant and long-term ramifications that will be felt for many decades to come.

New VOC Regulations Threatened the Quality of Roofing Assemblies until the Roofing Industry Became Involved

Ellen Thorp, associate executive director of the EPDM Roofing Association, makes it a point to be responsive to the many inquiries she gets. Most deal with routine requests for information about EPDM, but one phone call Thorp fielded six years ago from one of ERA’s member companies stood out from the rest. Ultimately, it changed the way ERA and the roofing industry do business.

A manufacturer’s rep had heard from a customer in Connecticut that the state was about to implement VOC regulations. The problem: The new regulations would ban some of the adhesives, sealants, and primers essential to installing EPDM and other roofing products, and there were no substitute products available to meet the new standards. If the new regulations went into effect as scheduled, they threatened to negatively impact the safety and quality of roofing assemblies in the affected area and the roofing industry as a whole.

The proposed regulations were part of an effort by the Ozone Transport Commission, or OTC, to achieve federally mandated air-quality standards in the Northeast and Mid-Atlantic. The OTC was created under the Clean Air Act to develop solutions for the New England states, as well as Delaware; Maryland; New Jersey; New York; Pennsylvania; Virginia; and Washington, D.C. At the time of OTC’s creation, most of these states had not attained federally mandated ozone standards, and the region lagged behind other parts of the U.S. in achieving compliance.

As part of its initial work, OTC developed a Model Rule for Adhesives and Sealants, based on regulations used in California, incorporating provisions effective in the climactic and market conditions of that state. At the time of the phone call to Thorp, the OTC had released the model rule, and states were beginning to draft their own regulations that included implementation dates within the next year. “The VOC limits the OTC was proposing would have required products that did not exist in the Northeast and Mid-Atlantic,” Thorp explains. “It was also concerning that they were basing the limits on California regulations. The climate in the Northeast is very different than in California, so we didn’t feel it was good science to be creating a model rule based on a place that had a completely different climate.”

Thorp and the ERA member companies were very interested in working with state regulators. “It certainly is our priority to reduce VOC emissions wherever possible, but it also is important to us to have regulations that our industry could work with and are based on the best available science,” she says. In fact, products that would meet the new regulations were in development but were not yet available. In addition, the new adhesives and sealants would require new or modified application techniques. That meant the roofing industry needed time to train thousands of roofing contractors.

ERA’s first step was to support its assertion that the climate of the Northeast differed dramatically from that of California. ERA hired Jim Hoff of Tegnos Research Inc. to review weather data and the effects the weather has on low-VOC products. “At ERA’s expense, we assembled relevant scientific data and provided it to the state regulators,” Thorp adds.

ERA worked with regulators in each state, sharing the results of its research. ERA provided the state environmental protection and air quality bureaus with detailed information about what sealants were available and explained the time needed to train roofing contractors. Working together, the regulatory bodies and ERA were able to agree on a phased-in or seasonal approach. For instance, in a majority of the states, the new low-VOC products were required initially only in the summer for three months. The year after, they were required for five months. Then, the following year, they were required year-round. Once these states had found success with this approach, others followed suit. “We explained to the regulators the importance of being consistent since many roofing companies do work across multiple states, especially in the Northeast where the states are small and roofing companies are likely to work across state lines,” Thorp notes.

Pages: 1 2

Roofs Are a Potential Solution for Urban Stormwater-management Issues

Can stormwater management using rooftops in urban areas be the financial solution to our growing urban stormwater problem? Will public-private partnerships with building owners help to provide a government service—stormwater drainage—in a more cost-effective manner? As cities struggle with the high administrative and procurement costs and time delays to manage stormwater, should we be looking up to roofs as part of the solution? Can we avoid more regulations and instead look to market-based solutions? These questions are beginning to be discussed and tested as new, innovative approaches to solving difficult and expensive urban stormwater-management issues.

Consulting and engineering firm Geosyntec Consultants is monitoring and controlling runoff from an existing New York City Parks and Recreation facility green roof.

Consulting and engineering firm Geosyntec
Consultants is monitoring and controlling runoff from an existing New York City Parks and Recreation facility green roof.

STORMWATER MANDATES

Many cities and counties are dealing with more stringent stormwater permits issued from the Washington, D.C.-based U.S. Environmental Protection Agency (EPA) and state environmental agencies that implement the federal Clean Water Act. Many communities are operating under federal court orders and administrative consent orders from EPA to reduce stormwater runoff into rivers, lakes and streams. In addition, there are 177 communities in the U.S. where stormwater and wastewater-collection systems are combined, known as combined sewer overflows (CSOs). These CSOs result in billions of gallons per year of combined untreated stormwater and wastewater discharged into waterways during large rainfall events. Funding crises have developed in many municipalities as they create programs, hire new staff, and design and construct new infrastructure to meet these regulatory requirements.

Many cities have spent billions of dollars separating stormwater drainage from wastewater-collection systems by installing new, costly drainage systems. In addition, large underground storage tunnels and vaults have been installed by many cities at the costs of billions of dollars per installation. These tunnels and vaults are designed to collect, hold and slowly release the stormwater into the treatment network. Increasing stormwater pipe sizes and creating tunnels and vaults is extremely costly. For example, Washington, D.C., just broke ground on the construction of two stormwater tunnels that are currently projected to cost $2.6 billion dollars to construct. Just one of the tunnels will be 13-miles long and hold 157 million gallons of combined stormwater and wastewater in 23-foot-diameter tunnels, 100-feet below the surface.

Green-infrastructure approaches to stormwater issues are included in most municipal stormwater permits and orders. For example, New York City is spending $187 million on green infrastructure for stormwater control in CSO areas to control the equivalent of 1 1/2 inches of runoff from impervious surfaces by December 2015. Public and private areas are under consideration for green-infrastructure solutions, and the city expects to spend $2.4 billion in green infrastructure during the next 20 years.

As cities address urban stormwater management, stormwater fees are being assessed on private-property owners to help fund the programs to solve urban stormwater issues. Close to 1,500 stormwater utilities are now in operation in the U.S., and the number is rapidly growing. These stormwater utilities typically are assessing stormwater fees based on the amount of impervious surfaces by property owner. The fees can range from a few hundred dollars per year to tens of thousands.

Roofs are considered an impervious surface because they are designed to shed stormwater through drainage networks into the collection system beneath city streets. For example, in New York City alone roofs make up 11.5 percent of the total area, or roughly 944.3 billion square feet, according to the city’s Department of Design and Construction’s Cool & Green Roofing Manual. Rather than looking at roofs as part of the stormwater problem in cities, they should be viewed as a possible solution.

DID YOU KNOW?

Baltimore enacted a stormwater fee
in 2013. Currently a building with a
200,000-square-foot roof would be
assessed $11,400 per year.

Pages: 1 2