Preserve, Protect and Defend

Our thoughts about government get intertwined with our images of the buildings that house its institutions. Architects know this, and in their designs, they often strive to evoke the key principles governments aspire to—permanence, stolidity, common-sense functionality, even grandeur. These buildings can touch our emotions. They can inspire us.

But no building lasts forever. When the time comes, talented individuals and enterprising companies have to step up and secure the integrity of these landmarks so they can survive to serve and inspire future generations.

The twin themes of this issue are government projects and historic renovation. Many of the projects you’ll see detailed on these pages would qualify in both categories, including three buildings that recently had iconic structures at their peaks meticulously restored. They include the copper pyramids on the North Carolina Legislative Building in Raleigh, North Carolina; the Saskatchewan Legislative Dome in Regina, Saskatchewan; and the Bradford County Courthouse Dome in Towanda, Pennsylvania.

The contractors involved in these projects conveyed the sense of responsibility that comes with keeping these one-of-a-kind structures functioning. But as they talked about the challenges they faced on these projects, it was the love of their jobs that kept coming through.

“We’re using natural, traditional building materials of stone, wood, copper and other noble metals,” said Philip Hoad of Empire Restoration Inc. in Scarborough, Ontario, as we talked about the Saskatchewan Dome project. “That’s what drives me to love the industry and my job—because it’s permanent, sustainable and it’s for future generations.”

Mike Tenoever of Century Slate in Durham, North Carolina, echoed that message when he talked about his company’s work on the North Carolina Legislative Building. “Our guys do this every single day, day in and day out,” he said. “It’s repetition, practice and love of restoration. Taking something so amazing and restoring it to the beauty it originally had—we all get a kick out of that.”

“You put in a hard day’s work and you’re proud to go home and know that what you’ve done is going to last not only your lifetime, but probably your kids’ lifetime, and maybe even your grandkids’ lifetime,” said Bill Burge of Charles F. Evans Roofing Company Inc. in Elmira, New York, as he detailed his company’s work on the Bradford County Courthouse.

Each of the roofing professionals I spoke with about these projects had the conscious goal of making sure the systems they installed might last another century. “We try to think of these slate and metal projects in terms of 100 years—that’s why we named our company Century Slate,” said Tenoever.

“This is the one thing that makes Charles F. Evans Company special to me: the fact that what we do from an architectural sheet metal standpoint, from a slate, copper, tile roof standpoint—these roofs will last 100, 150 years, and it is artwork,” Burge said.

“At the end of the day, why do we go to cities?” Hoad asked me. “We go to cities to look at their beautiful old buildings. We don’t generally go to look at their skyscrapers. It’s the old building that gets our minds and hearts working. When you go to a city and look at these old buildings intermingled with new buildings—that’s what gives a city life.”

Expert Crew Is Called in for Copper Roof Restoration Project

The dome on the Bradford County Courthouse was restored with copper panels during the first phase of a $3 million renovation project. Photos: Charles F. Evans Roofing Company Inc.

The octagonal dome atop the Bradford County Courthouse has been a fixture on the Towanda, Pennsylvania, skyline for more than 120 years. It now shines brightly after being restored with copper panels as part of a $3 million renovation project.

Built in the Classical and Renaissance revival styles in 1898, the four-story courthouse was placed on the National Registry of Historic Places in 1987. The dome’s original roof tiles were recently replaced as part of the project, which also included the complete restoration of the structure’s main roof.

The Charles F. Evans Company Inc., the union division of Evans Roofing Company Inc., headquartered in Elmira, New York, has a long history of successfully tackling projects with historical significance. C&D Waterproofing Corp., the general contractor on the project, reached out to the firm for support assessing the roofing portion of the project. The two companies teamed up on the project, with C&D Waterproofing handling the masonry restoration work and Charles F. Evans Company installing the roof systems.

The roofing work consisted of two phases. Phase One, which began in April of 2016, involved replacing the deteriorated terracotta tiles on the dome with soldered flat seam copper panels. Phase Two, which began in April of 2017, involved installing batten seam copper roofing on main structure and new copper flashings, gutters and downspouts.

Safety First

Construction Manager Bill Burge of Charles F. Evans Company was thrilled to be part of this historic project. Before

Originally completed in 1898, the courthouse was placed on the National Registry of Historic Places in 1987. The building’s main roof was removed and replaced with a copper batten seam roof after work on the dome was completed. Photos: Charles F. Evans Roofing Company Inc.

concentrating on the installation details, he knew the company would focus on the top priority. “Safety is number one,” says Burge. “Safety comes before profits. Safety comes before everything. We always want to make sure we have the right safety plan going into the job, and throughout the job, we are maintaining that plan and working that plan. We want our guys to go home to their families at the end of the day, so that’s key for us.”

Burge worked as a union carpenter for 10 years before joining the company more than seven years ago. He found he had an affinity for sheet metal work. “The craftsmanship and quality goes hand in hand with carpentry,” Burge says. “Everything starts with the carpentry. You have to have your base perfect; otherwise, everything from there on out doesn’t work. Sheet metal is a finished product, typically, especially in our business, so things have to be done right. Things have to be done to the highest standard of quality, because that’s what people see.”

The dome was designed to be a showpiece, and Field Superintendent Brian Babcock and his crew of qualified union sheet metal mechanics knew they would be held to an exacting standard. “The key to this project and every project is our talented mechanics in the field,” Burge says. “Charles F. Evans Company is nothing without this talent—they deserve all of the credit.”

Around the Dome

Phase One began with the removal of the tiles on the dome. “The ceramic tile was laid over open steel purlins,” Burge notes.

Charles F. Evans Roofing Company handled the roofing portion of the project, while C&D Waterproofing Corp. served as the general contractor and performed masonry restoration work. Photos: Charles F. Evans Roofing Company Inc.

“There was open framing with quarter-inch steel angle for the purlins, and each piece if tile was wired on. The removal process was fairly simple. You could actually lift up the bottom of the tile and snap it off.”

The removal work had to be done in sections and dried in every night. “One of the hardest things about this process was we had to install two layers of half-inch plywood over the steel purlins and anchor those down,” says Burge.

The plywood was attached to vertical two-by-fours, which were screwed into the purlins. The plywood was covered with one layer of Warrior 30-pound felt paper, Meadows Red Rosin Paper, and Grace Ultra High Temp underlayment in gutter areas.

The built-in gutter at the base of the dome was torn out and re-framed. The new gutter was wider and deeper according to the recommendation of Levine & Company Inc., the architect on the project. “We did everything to specification as Levine & Company drew it,” says Burge.

Once the cladding was completed on the gutter, the copper panels of the dome were installed. The 20-inch panels were made of 20-ounce, cold rolled copper, supplied by Revere Copper Products. Both the panels and cladding were fabricated in Charles F. Evans Company’s fabrication shop. The copper panels clip to each other and have a hem on four sides that clips

Custom flashing pieces were fabricated and installed where the copper roof panels met the base of the dome. Photos: Charles F. Evans Roofing Company Inc.

to the adjacent panel fastened to the deck. At the top of each panel, a hook clips off to the plywood, and the hook is covered by the panel directly above it.

Burge points out that the octagonal structure of the dome helped speed up the installation of the copper panels. “There are eight hips on the dome,” he notes. “Every section of the dome is like a piece of pie, basically, so we were able to start the panels in various locations. We didn’t have to start at one end and go around the dome. We could move around.”

Repairing the statue on the top of the dome was also part of the scope of work. “We soldered copper patches on any damage the statue had,” Burge says. “C&D Waterproofing completely cleaned and buffed the statue and applied a copper coating.”

Across the Roof

After the work on the dome was completed, work began on the main roof. The existing roof was removed down to the existing steel deck. The lower roof also had a built-in, copper-clad gutter that had to be removed and reconstructed. After

Scaffolding systems were constructed for both phases of the project. Shown here is part of the system installed around the lower roof, which featured planks and guardrails at the eave and rake edges. Photos: Charles F. Evans Roofing Company Inc.

the gutter was completed, work on the main roof began. “After we completely cleaned the metal decking, we had to install a layer of Grace Ultra High Temp underlayment,” Burge recalls. “We then installed two-by-four wood sleepers, 2 feet on center.”

Crews installed 1.5 inches of polyiso insulation between the two-by-fours, followed by another 1.5-inch layer of polyiso. Pieces of 5/8-inch plywood were then screwed down to the sleepers. The plywood received 30-pound felt, and the battens were installed 20 inches on center. The seams were completed using a custom-designed mechanical seamer manufactured by Roll Former Corp.

Installation of the 12,000 square feet of copper panels went smoothly, but where panels met the dome, details were tricky. “Everything is pitched, and the dome has eight different sections sitting right in the center of the structure,” Burge explains. “A lot of time and energy went into fabricating and installing custom flashing pieces at the base of the dome.”

The Safety Plan

A scaffolding system was the key to the safety plan for both phases of the project. “For Phase One, we had to remove a portion of the roofing system and put down some plywood on top of the existing roofing in order to build a scaffold to access the dome,” Burge says.

This photo shows the main roof before restoration work began. Photos: Charles F. Evans Roofing Company Inc.

Scaffolding was constructed to the eave edge of the copper dome, allowing the gutter to be removed. Ladders were used to access the dome and personal fall arrest systems were attached into HitchClips from Safety Anchor Fall Equipment, LLC, which served as individual anchor points. “We continued that process as we went up, using ladder jacks,” says Burge. “We continued with that plan, and never deviated.”

After Phase One was completed, the scaffolding was removed, and another scaffolding system was installed around the entire lower roof. Phase Two required planks and pre-engineered guardrails at the eave and rake edges. “Part of process of installing this roof included installing new safety anchors at various locations, and as we finished up, we were able to use those anchors as tie-off points,” Burge points out.

Phase Two is scheduled for completion in early November, and Burge has high praise for everyone involved with the project. “Levine & Co. Inc. is the architecture firm on the project,” he says. “We didn’t deter from any details developed. They drove this thing. We have worked with them on a great many projects in the past, and we have a great comfort level with them.”

Copper panels, cladding and details were fabricated in Charles F. Evans Company’s metal shop. Photos: Charles F. Evans Roofing Company Inc.

The masonry and roofing work had to be well coordinated. “C&D Masonry & Waterproofing progressed ahead of us with items that we needed to be done, and then came back behind us to mortar all of the counter flashings back into the dome,” Burge says. “They were right there with us every step of the way.”

Finding the right combination of workers for this project was crucial, according to Burge. “We had one of our best crews on this project for a reason,” he says. “This project was led by Brian Babcock of Sheet Metal Local 112, and he was essential in putting this whole thing together. He’s been with Charles F. Evans Company for 20 years, and his leadership and focus is the reason this project is going to be successful.”

Ornate sheet metal work is rare these days, but the art is not lost at Charles F. Evans Company. “We’ve been doing this work for 60-plus years,” Burge says. “This knowledge and this workmanship has been handed down generation after generation. We wouldn’t have taken on this project if we didn’t have the confidence in our employees that we do.”

Historic restoration projects are becoming an increasingly bigger chunk of the company’s portfolio, notes Burge. “We do a lot of work with older universities and businesses that have these types of buildings,” he says. “A lot of buildings need this type of work, and it’s a trade not everyone else has. This is a craft that takes years to master. We harness that, we build from within, and we bring in young guys and teach them how to do it the right way. We have a great mix of people ages 23 up to 60, and it’s learned, it’s taught, and it’s preached.”

Burge is hopeful the new roof will last at least as long as its predecessor. “This is the one thing that makes Charles F. Evans Company special to me: the fact that what we do from an architectural sheet metal standpoint, from a slate, copper, tile roof standpoint—these roofs will last 100, 150 years, and it is artwork,” he says. “The fact that you’re a part of something that’s been around since the turn of the last century—to me it doesn’t get any better than that.”

TEAM

Architect: Levine & Company Inc., Ardmore, Pennsylvania, Levineco.net
Construction Manager: C&D Waterproofing Corp., Bloomsburg, Pennsylvania, CDwaterproofingcorp.com
Roofing Contractor: Charles F. Evans Roofing Co. Inc., Elmira, New York, Evans-roofing.com

MATERIALS

Copper Supplier: Revere Copper Products, Reverecopper.com
Synthetic Underlayment: Grace Ultra High Temp, GCP Applied Technologies, GCPat.com
Mechanical Seamer: Roll Former Corp., Rollformercorp.com
Anchor Points: HitchClip, Safety Anchor Fall Equipment, LLC, Hitchclip.com

Restoring the Saskatchewan Legislative Dome Is a Labor of Love

The Saskatchewan Legislative Building in Regina was originally completed in 1912. The structure had undergone deterioration due to poor drainage around the dome, and a restoration project was initiated to repair the masonry and restore the copper dome. Photos: Ministry of Central Services, Government of Saskatchewan

“At the end of the day, why do we go to cities?” asks Philip Hoad. “We go to cities to look at their beautiful old buildings. We don’t generally go to look at their skyscrapers. It’s the old building that gets our minds and hearts working. When you go to a city and look at these old buildings intermingled with new buildings—that’s what gives a city life.”

Hoad is with Empire Restoration Inc., headquartered in Scarborough, Ontario, Canada. He’s been restoring historic buildings for some 30 years, and when he found out about the project to renovate the dome on the Saskatchewan Legislative Building, he knew it was a once-in-a-lifetime opportunity. “The architect put out a pre-qualification across Canada, and four firms were successful. We were one of them,” he remembers. “Then we ended up securing the tender bid. I’ll never forget it because I did the tender estimate just after a hernia operation in my dressing gown. It was really a project I won’t forget.”

The building was originally constructed in Regina, Saskatchewan, between 1908 and 1912, and it serves as the seat of government for the province and houses the legislative assembly. Designed by architects Edward and William Sutherland Maxwell of Montreal in a mix of English Renaissance and French Beaux-Arts styles, the building features ornate stone elements and unique decorative copper finishes that accent its iconic copper-clad dome. It is designated as a National Historic Site of Canada and a Provincial Heritage Property, and is subject to strict regulations regarding materials and methods of repair.

Work on the dome was carried out in a fully enclosed and heated temporary structure that allowed crews to continue throughout the winter months. Photos: Ministry of Central Services, Government of Saskatchewan

The structure has undergone some restoration work over the past 100 years, but in 2013, planning began for a conservation project designed to repair and restore the tower. The reasons for the project were twofold, according to Hoad. “First of all, the copper panels were blowing off, and somebody had re-secured them with face screws back in the ’60s or ’70s. But more importantly, the water was coming off the dome and damaging the stone below it. The dome was originally never designed with gutters, and then they later put gutters on, and these failed. So those were the two things that drove the project in the first place.”

Hoad knew the project would be challenging, but it he was confident that his company had the experience and passion to handle it. “These projects come along, for most of us, once in a lifetime,” he notes. “It’s the scale and the detail and the level of commitment that you need to restore an old building that sets us apart from, say, new construction. It’s not cookie-cutter. Everything is different, and you never know what you’re getting into—although with our experience, we’ve done so many old buildings we sort of know what we’re going to run into. All of the people who work for us love to work on these old buildings. It’s very satisfying at the end of it.”

The goals of the project were perfectly aligned with Hoad’s business philosophy. “When I start with an old building, I don’t want to change it,” he says. “It might look a little newer, but I want it to be the same as when we found it. I don’t want it to stand out as a brand-new building. We just want it to last another 100 years and to know that we’ve helped preserve it for future generations.”

The ornamental copper elements were restored and reset over the new copper panels. Photos: Ministry of Central Services, Government of Saskatchewan

Repairing the Substructure

Work on the dome was more complicated than initially thought. During the pre-construction condition survey and assessment, additional problems were discovered by the conservation architect, Spencer R. Higgins of Toronto. “Once the architect had done all his work and surveyed the building, they also realized the original woodwork was not quite up to snuff,” Hoad explains. “Basically, much of the original wood framing was made up of old pallets. It was quite remarkable. So structurally, we had to re-frame the hips, which we call the ribs. We completely removed the old pallet framing and re-framed it. We also tried to straighten the slight twist in dome, but it wasn’t easy to do since it was a poured concrete structure underneath.”

New ribs were constructed out of Douglas fir plywood using a CNC machine from 3-D architectural drawings to create templates. It was also necessary to remove and replace approximately 40 percent of deteriorated wood deck on the concrete dome, with both the interior and exterior surfaces of the concrete being repaired by the general contractor on the project, PCL Construction Management of Regina. “Re-framing the ribs was quite a challenge,” notes Hoad. “Once the concrete deck was repaired, we screwed new Douglas fir roof boards into the repaired concrete dome, added an air vapor barrier, Roxul insulation, wood nailers and an additional layer of Douglas fir roof boards, with housewrap and asphalt saturated roofing felt as the underlayment system for all the new copper roofing and cladding that would follow.”

Internally drained stainless-steel gutters were installed at the base of the dome. The gutters were lined with sheet lead. Photos: Ministry of Central Services, Government of Saskatchewan

After the masonry restoration was completed by RJW-Gem Campbell Stonemasons of Ottawa, Empire Restoration installed new gutters at the base of the dome. According to the architect’s design, heavy stainless-steel plate gutters were formed and then lined with sheet lead. Projecting stone cornice ledges were also covered in sheet lead.

Restoring the Copper Dome

The existing 16-ounce copper panels were all removed, and they were replaced with new 20-ounce panels recreated to match the original sizes and profiles. More than 20,000 square feet of copper panels were custom fabricated and installed. Great care was taken to carefully remove and restore decorative elements, including the copper garlands.

Decorative elements that could be saved were installed on new brass armatures. The dome is topped by a cupola and lantern, which were carefully restored. “The mantel on the very top, we didn’t strip that off,” Hoad notes. “We just replaced and repaired selective components, so that’s why you have a mix of old and new.”

Logistics at the job site were well coordinated. “Access was quite remarkable because PCL had erected a steel frame onto which we erected scaffolding, so the dome was right there in front of us,” Hoad notes.

Cornice sections were restored, and extensive sheet lead flashings were installed over stone cornices and ledges. Photos: Ministry of Central Services, Government of Saskatchewan

When working on the dome itself, crew members had to be tied off with personal fall arrest systems, as it was possible to slip through gaps between the scaffold decks and the dome roof surface. Weather was not an issue, as the steel frame structure was totally enclosed with a heavy-duty insulated tarp system. “We had our own ventilation system, we had a heating system, we had electricity up there, we had pneumatic power—we basically had everything up there. PCL had it well set up for the various trades. There was a large crane on site to hoist all our materials up.”

Hoad cites the sheer size of the project as one of his greatest concerns. “The biggest challenge was just the scale of the project, being able to produce the amount of work necessary and get the job done in the prescribed time,” he says. “It was a lot of the same thing, albeit with some very complicated detailing. We had multiple skill sets on the site dealing with multiple materials and details.”

The project has won numerous awards, including a 2017 North American Copper in Architecture Award from the Copper Development Association. Hoad is proud of his company’s role in the project but relieved it is completed. “During it, I was at times tearing my hair out,” he recalls. “It was a very high-pressure project that lasted a long time. It was three or four days a week of constant men, materials, equipment, meetings, details, changes, extras, credits. From start to finish, it was two years of my life.”

The cupola and lantern at the top of the dome were repaired in situ. Photos: Ministry of Central Services, Government of Saskatchewan

Despite the pressure, Hoad found the work extremely satisfying. “What we are doing is permanent and built to last for future generations,” he says. “We’re using natural, traditional building materials of stone, wood, copper and other noble metals. That’s what drives me to love the industry and my job—because it’s permanent, sustainable and it’s for future generations.”

After all, it’s often the roof and flashings that play one of the most critical roles in fighting the elements of weather, notes Hoad. “Roofing and sheet metal deficiencies is where much of building damage and deterioration starts,” he says. “You can repair a masonry wall, but if you don’t stop it getting saturated, it’ll just deteriorate again in another few years. Regina was a good example of that. We’ve now provided great protection to these beautiful stone elements, allowing them to last another 100 years.”

TEAM

Conservation Architect: Spencer R. Higgins, Architect Incorporated, Toronto, Ontario, Higginsarchitect.com
General Contractor: PCL Construction Management, Regina, Saskatchewan, PCL.com
Sheet Metal Contractor: Empire Restoration Inc., Scarborough, Ontario, EmpireRestoration.com
Masonry Contractor: RJW-Gem Campbell Stonemasons Inc., Ottawa, Ontario, RJWgem.com

MATERIALS

Copper: 20-ounce copper sheet metal
Wood Framing: Douglas fir
Insulation: Rockwool Rigid Insulation, Roxul, Roxul.com

North Carolina Legislative Building Restoration Poses Unique Challenges

The North Carolina State Legislative Building was the site of a renovation project that included asbestos abatement in the interior and a complete restoration of the building’s roof systems.

The North Carolina State Legislative Building was the site of a renovation project that included asbestos abatement in the interior and a complete restoration of the building’s roof systems. Photos: SkySite Images

Some of the variables that can make a project difficult include a variety of complex, interconnected systems, unique design elements, and a tight schedule. These challenges are heightened on a highly visible, historic building, where the goal of keeping the design historically accurate must be balanced with making improvements to the structure and functionality of the systems. All of these elements and more were in play during the restoration of the one-of-a-kind roof on the North Carolina State Legislative Building in Raleigh, North Carolina. It took a talented team of design, engineering, and roofing professionals to bring the project to a successful conclusion.

Originally designed by architect Edward Durell Stone, the building has been the home of the state legislature since 1963, but water intrusion under its copper pyramids and at windows and doors on the promenade level precipitated a complete restoration project. Renovation work conducted in 2016 and 2017 included asbestos abatement in the interior and a complete restoration of the building’s roof systems.

The roofing phase of the project included removing and replacing the metal roof systems on the five copper-clad pyramids, as well as re-roofing the low-slope sections adjacent to the pyramids with a two-ply modified bitumen system. A liquid-applied waterproofing system was installed in the planter areas and under the pavers in the promenade section. The project also involved the removal and replacement of windows, doors, and skylights, as well as repairing and coating the concrete surfaces at the perimeter of the roof.

The design of the quilted flat lock copper panel system involved 17 different panel profiles. A false batten was added after the panels were in place.

The design of the quilted flat lock copper panel system involved 17 different panel profiles. A false batten was added after the panels were in place. Photos: SkySite Images

Companies involved in the project included Raymond Engineering, headquartered in Raleigh, North Carolina, which provided engineering and architectural services; Owens Roofing Inc., also located in Raleigh, which served as the general contractor on the roofing phase of the project and installed the low-slope systems; and The Century Slate Company, headquartered in Durham, North Carolina, which removed and replaced the copper roofs on the five pyramids.

Some of the key players in the project shared their insights with Roofing, including John Willers, a senior engineer with Raymond Engineering; Bert Owens, president of Owens Roofing; and Mike Tenoever, president of Century Slate.

“This is an iconic state building with a unique roof system which the owner and designer required to be aesthetically replicated,” Tenoever notes. “At the same time, some functionality and technical improvements were incorporated. This is a very high-profile project with a lot of complexity, particularly given the schedule. There were a lot of details compressed into a very short period of time.”

Design and Pre-Construction

Raymond Engineering conducted testing on the existing roofs and specified systems designed to match the originals and provide some necessary improvements, including added insulation and ventilation under the pyramids. Willers worked closely with Jason Mobraten, the senior architect on the project. “We provided the engineering and architectural services, beginning with design and then assisting with bidding and managing the construction phase of this project,” says Willers. “We engineered the copper roof, all of the detailing for the modified asphalt roof, and the detailing for the drainage, the pavers, and the sealants for the promenade.”

Crews from Owens Roofing removed the existing plants, media and drainage system from four 42-foot-by-42-foot fixed planters with skylights. After the substrate was cleaned and primed, a liquid-applied waterproofing system was installed.

Crews from Owens Roofing removed the existing plants, media and drainage system from four 42-foot-by-42-foot fixed planters with skylights. After the substrate was cleaned and primed, a liquid-applied waterproofing system was installed. Photos: SkySite Images

The schedule was an obvious challenge, as the majority of the work had to be completed while the legislature was in recess, and there were substantial financial penalties that would come into play if the work was not completed on time. “The client also required that the asbestos abatement be completed before re-roofing the copper-clad pyramids to avoid the risk of dislodging the asbestos-containing textured ceiling finish. However, doing the work in two phases allowed the asbestos contractor to get started while the rest of the job was designed and bid,” Willers states.

The building houses legislators’ offices, and it was open and occupied during construction, with the exception of the areas undergoing asbestos abatement. The schedule had to be carefully adjusted as the job progressed. “In addition to our role in monitoring the technical aspects of the construction, we closely monitored the construction phasing and sequencing, as it was directly driven by the schedule of the state legislature,” Willers notes. “We had to take a lot of care in developing the schedule and monitoring it.”

Willers and Mobraten knew that the details on this project would be crucial. “There were previously some issues where the copper and the low-slope membrane roofs met,” Willers says. “We detailed that very carefully so that we had redundancy in keeping that watertight.”

Extensive mock-ups of the copper pyramids were constructed and tested to ensure the quilted pattern could be exactly replicated while avoiding the leaks that plagued the existing structure.

Photos: SkySite Images

Photos: SkySite Images

As designers looked for ways to improve construction, they explored the design and construction of the quilted panels. “From a design standpoint, we wondered why we had this odd diamond-shaped pattern,” Willers recalls. “After we played with the dimensions a bit, we realized that if you fly over the building, from above all of those diamond sections look like squares.”

The key was to replicate the design with its false battens while avoiding leaks. “We were concerned about how to detail out the joining of the copper sheets that formed the diamond-shaped panels,” Willers says. “What had been done was susceptible to windblown rain getting in. We did two things differently: the little clips that supported these battens were secured by forming the clips with hooks that would be integral with the single-locked seams and soldering the clips to the top surface of the copper panels. Previously they were held in place by pop rivets, which went through the copper.”

The Secrets of the Pyramids

Century Slate was well prepared to tackle the copper roofing on the project. The company has been in business more than 20 years, and it specializes in historic restoration projects including slate, tile, wood, copper and other historical metals.

Crews from Century Slate removed the existing copper panels. The copper was salvaged and recycled.

Crews from Century Slate removed the existing copper panels. The copper was salvaged and recycled. Photos: SkySite Images

Tenoever knew the design of the original quilted flat lock copper panel system needed to be replicated exactly. “There were 17 different panel profiles, each within a very particular location within the roof’s quilted pattern,” Tenoever notes. “Proper placement of each different profile was essential to the whole system working correctly and looking like the original.”

The first step was to remove the existing copper roofs. “We tore off the entire system down to the deck,” Tenoever explains. “We then installed a semi permeable a vapor barrier, insulation, and a vapor retarder.”

Along with added insulation and Carlisle WIP 300HT self-adhering underlayment, crews also installed a vented nail base from Hunter Panels. “The Hunter Cool-Vent is a vented nail base that gets screwed down,” Tenoever says. “The goal was to have a breathable air cavity. All of the hip caps are actually vented to allow the air to get out.”

With the addition of the insulation and nail base, the roof was built up approximately 6 inches from the previous configuration. This added height necessitated changes in the custom flashing at the base of the pyramids but did not change the configuration of the copper panels.

In all, 22,500 square feet of copper panels fabricated by K&M Sheet Metal in Durham were installed. Each of the 17 different panels was labeled with a letter code. “When they were out at the site, we could just grab an A panel or a B panel, as needed, and bring them to that layout,” Tenoever explains. “Four of the pyramids were the same, and the center one was different, as that was the one that had skylights built into it.”

The areas between the pyramids were covered with a two-ply modified bitumen roofing system. Photos: SkySite Images

The panels feature flat-lock clips that were screwed down to the nail base. “It’s a typical flat seam panel system, and the panels interlock together,” says Tenoever. “You can see the batten panel above it, which is an aesthetic feature. The battens and the clips that held them were amazingly intricate, for what they were. They were cut out with a CNC machine and soldered onto the copper panels prior to installation. Later we came back and installed the batten system over the top.”

Century Slate built new curbs in the center pyramid for the new skylights, which were manufactured by Wasco. “The skylights were one of the last things to go on,” says Tenoever. “They were custom made because even though they look square, there isn’t a square angle on them.”

Custom copper flashings were installed at the bases. “One of the trickier parts for us probably would have been the tie-in of the modified roof, because Owens Roofing had to do their bit, and we were also replacing all of the wood blocking and everything all along the bottom edge before we could put our flashing on,” Tenoever recalls. “It took a lot of coordination between the two trades, but it all worked out.”

The Low-Slope Roof Systems

Owens Roofing served as the general contractor on the project and installed the low-slope roof systems. The company was established in 1986 in Raleigh, and focuses on commercial and institutional buildings, almost exclusively re-roofing. Much of its work is on historic buildings, so Owens was confident he could execute the project and complete it on schedule.

A scaffolding system offered secure roof access, but material had to be loaded and removed from one access point, so logistics had to be carefully mapped out.

A scaffolding system offered secure roof access, but material had to be loaded and removed from one access point, so logistics had to be carefully mapped out. Photos: SkySite Images

Crews from Owens Roofing installed 18,900 square feet of modified bitumen roofing from Soprema over concrete decks, including the areas between the pyramids. Tapered polyiso and half-inch DEXcell cover board from National Gypsum were installed using Duotack adhesive, followed by the two plies of modified bitumen membrane.

A liquid waterproofing system from Sika was specified for the large planter areas. Crews from Owens Roofing removed the existing plants, media and drainage system from four 42-foot-by-42-foot fixed planters with skylights. After the substrate had been cleaned and primed, the Sika RoofPro system was installed.

“Once it’s cleaned and primed, it’s pretty simple,” says Owens. “The product is one part, and you don’t even have to mix it. We applied it with rollers on this project. You embed fabric sheets in the system and then topcoat it. It was a cold-weather job, but fortunately we caught a break last winter in that it wasn’t as cold as usual, and we didn’t miss as much time as we might have.”

The 30,000-square-foot promenade section was originally covered by white granite pavers native to North Carolina. The old pavers were removed and replaced over a new roof system, which was comprised of modified bitumen sheets beneath the liquid-applied waterproofing system. “The concrete deck was primed and a modified bitumen base ply heat welded to the deck,” Owens explains. “This surface was primed in preparation for the Roof Pro system, which was then installed.”

Innovative Roof Services of Raleigh was called in to conduct a high-voltage electrical testing to ensure there were no voids in the system before the pavers were re-installed. The pavers had originally been set in a bed of mortar, and they had to be removed and cleaned, which revealed a problem. “When we took the pavers up, we found out that they ranged between 1-1/8 and 1-3/4 inches thick,” Owens notes. “That wasn’t a problem when they were set in a bed of mortar, but over extruded polystyrene, they would have been all up and down. We put in a change order and had the pavers set in a bed of sand on top of one layer polystyrene.” The sand was adjusted by hand to ensure the pavers were level. New pavers were added to replace those broken over the years.

On the roof’s concrete eyebrows, damaged areas of concrete were repaired, joints were sealed, and a cold-applied waterproofing system from Sika Sarnafil was used to cover 8,800 square feet of concrete.

Numerous Challenges

Important considerations on the project included safety and logistics, as well as the tight schedule. Safety was paramount, and a third-party safety monitor was on the site to ensure the safety plan was designed and executed properly. During the time between when the original skylights were removed and when their replacements installed, the voids in the roof deck needed to be cordoned off and covered according to OSHA regulations. Personal fall arrest systems were used on the pyramids and outside of the safety perimeter, which was marked with flags. “With the promenade, you had a wide concrete eyebrow, so it made it easier to set up the safety lines and keep everyone safely away from the edge,” Owens notes.

This aerial photo taken before the restoration project shows the copper roofs with their green patina. Photos: SkySite Images

“Safety is a key concern as on all jobs, but this one in particular was highly visible out the windows of the nearby Department of Labor,” Owens continues. “We were paid a courtesy visit and agreed with them that an on-site safety meeting conducted by their personnel might be useful. The owner allowed us use of one of their auditoriums and we had a very productive half-day meeting for all trades. Every week we had a meeting with a state construction monitor.”

A scaffolding system was set up that offered secure roof access, but there was only one point for loading and unloading material, so logistics at the site were a concern. “We had to use wheelbarrows and roof carts to transport materials back and forth to the scaffolding tower,” Tenoever notes. “Between the removal of the original roof and the installation of the multiple layers of the new roof system, over 150,000 square feet of roofing materials were moved by hand over an average distance of approximately 200 feet.”

Loading and unloading added another wrinkle to the complicated schedule. “The schedule was based on when the legislature was scheduled to come back to town—not how long the job was supposed to take,” Owens says. “We were all concerned with the ambitious time frame and $1,000 a day liquidated damages included with this job.”

Willers cited excellent communication as one of the keys to completing the project on time. “Fortunately, the project managers for the general contractor and other trades were highly organized individuals,” Willers says. “Regular site meetings were detailed and thorough. Although setbacks did occur, communication kept the ball rolling.”

The roof system on the building’s iconic copper clad pyramids was removed and carefully recreated, matching the original design while adding a vented cavity and increasing the thermal insulation. Photos: SkySite Images

A Unique Experience

Copper removed from the existing roof was salvaged and recycled, notes Willers, with the exception of a few pieces that

were cut into the shape of the state of North Carolina to serve as mementos of the unique project. “We’re very proud of the design and the outcome—and the assistance we got from all of the contractors involved,” Willers says. “We had some pretty heavy rains after the project was completed, including some high winds, and there were no leaks.”

Tenoever also looks back on the project with pride. “A one-of-a-kind roof system was custom built and delivered on schedule and with the owner and designer’s praises,” he says. “Taking something so amazing and restoring it to the beauty it originally had—we all get a kick out of that.”

TEAM

Design and Engineering Services: Raymond Engineering, Raleigh, North Carolina, RaymondLLC.com
General Contractor: Owens Roofing Inc., Raleigh, North Carolina
Metal Roofing Contractor: The Century Slate Company, Durham, North Carolina, CenturySlate.com
Leak Testing: Innovative Roof Services, LLC, Raleigh, North Carolina, IRS-LLC.net

MATERIALS

Metal Roof System
Copper: 20-ounce copper sheet metal
Vented Nail Base: Hunter Cool-Vent, Hunter Panels, HunterPanels.com
Underlayment: Carlisle WIP 300HT, Carlisle, Carlislewipproducts.com
Skylights: Wasco Skylights, Wascoskylights.com

Modified Bitumen Membrane Roof System

Membrane: Sopralene Flam 180 and Sopralene Flam 180 FR GR, Soprema, Soprema.us
Adhesive: Duotack, Soprema
Insulation: Sopra-Iso, Soprema
Cover Board: DEXcell, National Gypsum, NationalGypsum.com

Waterproofing System

Liquid Applied Membrane: RoofPro 641, Sika Corp., USA.Sika.com
Reinforcing Fabric: Reemat, Sika Corp.
Primer: Sikalastic EP Primer/Sealer
Extruded Polystyrene Insulation: Foamular 604, Owens Corning, OwensCorning.com

Shears Feature Curved Blade

The KD-446L Profile Shears features a curved blade configuration for maneuverability when making tight-curved cuts.

The KD-446L Profile Shears features a curved blade configuration for maneuverability when making tight-curved cuts.

Kett Tool Co. introduces the KD-446L Profile Shears, featuring a curved blade configuration for maneuverability when making tight-curved cuts in profile and flat materials.
 
Professionals working in the construction, metal building, metal fabrication, roofing and other industries will appreciate the flexibility of the KD-446L thanks to its lightweight design and ability to cut corrugated and flat metal, as well as soft non-ferrous metals at a radius as tight as three inches. At only 15 inches long and weighing five pounds, the KD-446L provides the versatility to make curved cuts while maintaining comfort and control.
 
The KD-446L features a five-amp pistol grip, variable speed motor that allows users to control speeds from 0 to 2,500 RPMs. The shears cut profile and flat materials up to 18-gauge cold-rolled (C.R.) mild steel, soft non-ferrous metals like aluminum, copper and brass (up to .090 inches thick); wire mesh and many other sheet materials – all at speeds of up to 28 feet per minute.
 
The cutting blades are made from quality steel, heat treated and precision ground for extended operation.
 
To see the KD-446L Profile Shears in action, watch the video here.  
 
KD-446L Profile Shears are available through authorized dealers. For more information or to locate a dealer, visit the website or call (513)271-0333.

North American Copper in Architecture Awards Contest Accepts Contest Submissions

For centuries, copper has been used on buildings not only for its beauty, but its durability, versatility and longevity. Now in its 10th year, the North American Copper in Architecture (NACIA) awards program is accepting submissions for innovative and unique copper or copper alloy building projects in the U.S. and Canada. Architects and sheet metal contractors can submit their projects for the 2017 awards campaign through the end of January.   

The Copper Development Association (CDA), in collaboration with the Canadian Copper & Brass Development Association (CCBDA) , is proud to recognize projects in the categories of Restoration/Renovation, New Construction and Ornamental Applications. Over the years, award-winning copper projects have come in the form of new and restored government buildings, educational facilities, museums, libraries, firehouses, single-family homes and places of worship.

With 2017 marking the program’s 10th anniversary, the copper industry is seeking the public’s help in selecting the top 10 projects from the last decade. Participate by voting for your favorite copper projects.

To celebrate the milestone, the top 10 copper projects, along with the 2017 award winners, will also be announced in April at the NACIA awards ceremony in Orlando.

For more information about the NACIA awards program, visit the Call for Entries Page. The submission deadline is Jan. 31, 2017.

Project Profiles: Historic Preservation

CATHEDRAL OF ST. PAUL, BIRMINGHAM, ALA.

Team

ROOFING CONTRACTOR: Midland Engineering Co., South
Bend, Ind.
ARCHITECT: ArchitectureWorks LLP, Birmingham
GENERAL CONTRACTOR: Hoar Construction LLC, Birmingham,
MASONRY CONTRACTOR: Ziolkowski Construction Inc., South Bend

The cathedral’s intricate slate tile patterns incorporated three slate colors and square and deep bevel cut tiles.

The cathedral’s intricate slate tile patterns incorporated three slate colors and square and deep bevel cut tiles.

Roof Materials

The Catholic Archdiocese of Birmingham required the cathedral’s new roof system be a historically accurate reproduction of the original in materials, design and craftsmanship. The cathedral’s intricate slate tile patterns incorporated three slate colors and square and deep bevel cut tiles. Six large slate crosses and multiple accent patterns, barely visible on the faded original roof, required exacting measurements prior to tear-off and a high level of precision to recreate and maintain over such a large field and on octagonal steeples.

Because of metal thinning brought on by their advanced age, every copper architectural and functional feature in the existing roof system had to be carefully removed and shipped to Midland Engineering’s South Bend facility to be historically replicated in its metal shop. This included seven ornate crosses (up to 17-feet tall), finials, turret caps and more. There were more than four dozen components, for which no original prints existed, as well as over 500 feet each of custom copper cornices and radius gutters with matching straps. More than 20,000 square feet of 16- and 20-ounce copper was utilized for fabrication of architectural elements and flashing.

Midland Engineering was asked to make improvements to the original roof system to improve attic ventilation while maintaining the Gothic Revival period look. To accomplish this, the crew integrated bronze screen (invisible from the ground) into the original copper cornice and eave design to provide improved cold air intake while new louvered copper dormers replaced the original painted roof ventilator.

An updated lightning protection system was incorporated into the new roof design, hidden within many of the new copper crosses and other architectural elements. The system was fabricated in Midland Engineering’s shop to maintain the Gothic Revival look.

The metal shop also clad 10 previously painted windows and mullions in copper, effectively eliminating frequent and costly maintenance. These windows, reachable only by crane at considerable expense, formerly required painting and other maintenance every five to seven years.

About 6,500 square feet of lead-coated copper, which patinas to a limestone color, was utilized to cap all limestone exposed to weather, reducing ongoing maintenance of limestone joints.

Extensive termite damage to structural framing required repair prior to installation of the new roofing system. Upon removal of the original slate roof and completion of the structural repairs, the new roof was dried-in and installation of the new slate roof began. The historically accurate replacements of the original copper architectural features were installed according to schedule.

SLATE SUPPLIER: North Country Slate
COPPER SUPPLIER: Hussey Copper

Roof Report

The Cathedral of St. Paul is the centerpiece of the Roman Catholic Diocese of Birmingham. Completed in 1893 at a cost of $90,000, the cathedral is widely considered to be a handsome example of the American Neo-Gothic variant of the Gothic Revival style. The cathedral measures 96-feet wide by 140-feet long and encompasses more than 60,000 square feet. It features twin octagonal steeples, rising 183-feet high.

Work schedules on this project were a challenge. The contract required parishioner and clergy access to the church must be maintained 24 hours a day, seven days a week, throughout the eight-month duration of the project. Further, because of the noise inherent in roof construction, work schedules had to be planned around regular church services and events and rescheduled several times a month for funerals and other unscheduled events.

“We could not have been more pleased with the work accomplished by the team from Midland Engineering,” says Very Rev. Kevin M. Bazzel, V.G., J.C.L., rector of the Cathedral of St. Paul. “It is a marvel to us to be able to see the church in its original glory, and all of this thanks to Midland!”

The National Roofing Contractors Association, Rosemont, Ill., awarded Midland Engineering the prestigious Gold Circle Award in 2016. Midland was recognized in the Outstanding Workmanship—Steep-slope Category.

Photo: Rob Culpepper

Pages: 1 2 3 4

Project Profiles: Education Facilities

Maury Hall, U.S. Naval Academy, Annapolis, Md.

TEAM

Roofing Contractor: Wagner Roofing, Hyattsville, Md.
General Contractor: C.E.R. Inc., Baltimore, (410) 247-9096

The project included 34 dormers that feature double-lock standing-seam copper and fascia metal.

The project included 34 dormers that feature double-lock standing-seam copper and fascia metal.

ROOF MATERIALS

Wagner Roofing was awarded the complete replacement of all roof systems. These included an upper double-lock standing-seam copper roof system, a bullnose copper cornice transition, slate mansard, 34 dormers with double-lock standing-seam copper and fascia metal, eight copper hip metal caps and a continuous built-in gutter with decorative copper fascia. Each of the dormers also had a copper window well.

The upper standing-seam roof was removed and replaced with 24-inch-wide, 20-ounce copper coil rollformed into 1-inch-high by 21-inch-wide continuous standing-seam panels that matched the original profile. The eave bullnose, which also served as the mansard flashing, was removed and returned to Wagner Roofing’s shop where it was replicated to match the exact size and profile.

The 34 dormer roofs were replaced with 20-inch-wide, 20-ounce copper coil formed into 1-inch-high by 17-inch- wide continuous standing-seam panels. The decorative ornate fascia of the dormers was carefully removed and Wagner’s skilled craftsmen used it as a template to develop the new two-piece copper cornice to which the roof panels locked. The cheeks and face of the dormers were also re-clad with custom-fabricated 20-ounce copper.

The oversized built-in-gutter at the base of the slate mansard was removed and replaced with a new 20-ounce copper liner custom-formed and soldered onsite. The replacement included a specialty “bull-nosed” drip edge at the base of the slate and an ornate, custom-formed fascia on the exterior of the built-in gutter. The decorative copper fascia included 85 “hubcaps”, 152 “half wheels” and 14 decorative pressed-copper miters. The original hubcap and half-wheel ornaments were broken down and patterns were replicated. Each ornamental piece was hand assembled from a pattern of 14 individual pieces of 20-ounce copper before being installed at their precise original location on the new fascia. The miters were made by six different molds, taken from the original worn pieces, to stamp the design into 20-ounce sheet copper.

In all, more than 43,000 pounds of 20-ounce copper was used on the project.

Copper Manufacturer: Revere Copper Products

ROOF REPORT

Maury Hall was built in 1907 and was designed by Ernest Flagg. Flagg designed many of the buildings at the U.S. Naval Academy, including the Chapel, Bancroft Hall, Mahan Hall, the superintendent’s residence and Sampson Hall. His career was largely influenced by his studies at École des Beaux-Arts, Paris. Examples of Flagg’s Beaux-Arts influence can be found in the decorative copper adorning the built-in gutter on building designs.

Maury Hall currently houses the departments of Weapons and Systems Engineering and Electrical Engineering. The building sits in a courtyard connected to Mahan Hall and across from its design twin, Sampson Hall.

PHOTO: Joe Guido

Pages: 1 2 3 4 5 6 7 8 9 10 11 12

Historic Home Gets a Refresh with a Striking New Copper Roof

Anyone who spends time in Connecticut finds themselves in a place with deep historical roots that stretch back to colonial times. It is an inherent part of the charm of the state and something in which residents take great pride.

Along with delivering the performance desired by the homeowners, the copper roof maintains the traditional look and feel of the house.

Along with delivering the performance desired by the homeowners, the copper roof maintains the traditional look and feel of the house.

There is a real, tangible window to this rich historical tradition in many of the historic homes and buildings all across the state. Great care has been taken to preserve the look and operation of many historic structures and to integrate them into the architectural fabric of communities all around Connecticut.

Like many places and institutions in the state, Litchfield County has a history that goes back to pre-Revolutionary days. Established as a county in 1719, Litchfield County was home to Harriett Beecher Stowe and was also where Sarah Pierce established in 1792 the Litchfield Female Academy, one of the first major educational institutions for women and girls in the U.S.

Today, Litchfield County has 166 properties and districts listed on the National Register of Historic Places. Staying true to the architectural heritage of the state is very important to the people who live there. However, just because a home or building looks like it did a few hundred years ago doesn’t mean it has to operate that way, too. Many owners of historic homes want to bring the function of their houses into modern times while still keeping the look and feel of the past.

This was the case for homeowners in Litchfield County who wanted to make some modern improvements while still preserving the traditional look and feel of their home in Sharon, Conn. For this work, the homeowners turned to the professionals at Anderson Enterprises, a general contracting building and renovation firm in Sharon. The project started with modest goals in mind but quickly grew.

“We were initially hired to replace four oak floors,” recalls Ellen Burcroff with Anderson Enterprises. “That was then extended to changing the mouldings, re-plastering, painting, renovating the third floor and master bedroom, as well as rebuilding the chimney and replacing the roof.”

Anderson Enterprises won the job after an interview. “Our goal was to get the homeowners into a more pleasing interior,” Burcroff says.

The entire home features a brass snow-retention system. PHOTO: MetalPlus LLC

The entire home features a brass snow-retention system. PHOTO: MetalPlus LLC

As part of the interior overhaul, the project included providing the home with proper ventilation and insulation. Along with delivering the performance desired by the homeowners, maintaining the traditional look and feel of the house was extremely important. Performing this kind of retrofit on a historic home without damaging the exterior often means going in through the roof, which was what was decided upon for this project. Removing the old wood shake roof meant installing a new one. The contractor believed this was a perfect time for a change.

“The customers wanted a historically authentic look,” Burcroff explains. “We strongly recommended not using wood shingles again. Ultimately, we all decided on using copper for the new roof.”

A copper roof was a perfect solution for this project for many reasons. On a performance level, the homeowners were interested in the durability and energy efficiency of copper. Aesthetically, copper delivers a striking curb appeal that is still in keeping with the historic nature of the home. And its natural patina will only enhance the look of the home over time.

GETTING IT DONE

With the appropriate decisions made, Anderson Enterprises’ team started work on the home. The wood shakes and wood lath were removed, exposing the rafters underneath. Fiberglass insulation was installed with about a 2-inch space left above the rafters for airflow.

PHOTOS: VLC IMAGES MOBILE STUDIO, COURTESY MARIO LALLIER, unless otherwise noted

Pages: 1 2

Project Profiles: Retail

Sierra Nevada Brewery, Mills River, N.C.

About 58,000 pounds of copper were installed on the brewery.

About 58,000 pounds of copper were installed on the brewery.

TEAM

Roofing Contractor: The Century Slate Roofing Co., Durham, N.C.
Architect: Matthew Galloway of Russell Gallaway Associates Inc., Chico, Calif.

ROOF MATERIALS

Approximately 423 squares of 1/2-inch-thick, 18-inch-tall by random width Unfading Green Slates were installed by hand on the project. This was close to 750,000 pounds of slate, or 375 tons.

About 3,000 feet of custom copper gutters and downspouts, conductor heads and 100 squares of painted standing-seam panels were fabricated, and pre-built copper clad dormers and decorative copper cornices were installed.

The project also included 35 squares of copper standing-seam roofing, 25 squares of soldered copper flat-seam roofing and 115 squares of copper wall cladding. About 58,000 pounds of copper were installed on the brewery.

Everything on the building is oversized and that meant everything had to be built to support the heavy structural loads and live loads from wind and mountain snow. The large roof faces called for 10-inch custom copper gutters. When you have gutters that large in the mountains of North Carolina you have to consider the extraordinary weight of the annual snow.

In addition to snow guards being installed on the slate roof, custom 1/4-inch-thick copper gutter brackets fastened the gutter to the fascia. It is typical on steel-framed construction, particularly on this scale, that the framing is out of square and there is widely varying fascia and rake dimensions.

Approximately 423 squares of 1/2-inch-thick, 18-inch-tall by random width Unfading Green Slates were installed by hand on the project.

Approximately 423 squares of 1/2-inch-thick, 18-inch-tall by random width Unfading Green Slates were installed by hand on the project.

However, these items should not appear out of square or have varying dimensions. Great care had to be taken to measure and custom bend onsite all the detail flashings so everything appeared perfect. This took many skilled craftsmen, a great deal of time and the absolute drive to provide the highest quality work.

Slate Manufacturer: Evergreen Slate Co. Inc.
Copper Fabricator: K&M Sheet Metal LLC
Supplier of Underlayment, Copper Sheets and Coil, Insulation and Nailbase Sheathing: ABC Supply Co. Inc.

ROOF REPORT

The new-construction project began in November 2013 and was completed in September 2015.
The team completed the slate installation so well that The Century Slate Co. was awarded the 2015 Excellence in Craftsmanship Award by Evergreen Slate for the project.

PHOTOS: The Century Slate Roofing Co.

Pages: 1 2 3 4