The Integration of Roof and Brick Requires Concise Details

PHOTO 1: The through-wall flashing stainless-steel drip can be observed projecting nicely from the wall—but the termination of the roof base flashing more than 1-inch below resulted in a section of the brick wall that allows water to pass into the wall below the through-wall flashing and behind the roof base flashing, resulting in the damage seen in Photo 2.

PHOTO 1: The through-wall flashing stainless-steel drip can be observed projecting nicely from the wall—but the termination of the roof base flashing more than 1-inch below resulted in a section of the brick wall that allows water to pass into the wall below the through-wall flashing and behind the roof base flashing, resulting in the damage seen in Photo 2.

Projects are perceived to be successful by their ability to prevent disturbance from weather, including rain. Have you ever heard two architects talking about Frank Lloyd Wright?

“What a genius! His spatial conception is magnificent, even after 100 years.”

“But all his buildings leak!”

I used to give a talk to University of Illinois architecture students in which I told them the quickest way to go out of business is to be sued. The quickest way to be sued is to have a building allow moisture intrusion. If he were alive today, Frank Lloyd Wright—God rest his soul—would be in jail (and a few current architects may be well on their way). Owners are not very kind when their “babies” leak.

Many roof termination interfaces are never even thought about by designers and are left to the roofing contractor to work out. This is not a recommended practice. One such condition—that every architect should be able to detail—is how the roof base flashing terminates at a masonry wall that has through-wall flashing and weeps at the base of the wall above the roof. I believe so fervently that architects should be proficient in detailing these conditions that I believe it should be required to procure their license.

WHY THE IMPORTANCE

The interface of roof base flashing and masonry through-wall systems occurs on a majority of commercial construction projects. If this transition is not performed correctly, moisture intrusion behind the roof base flashing to the interior will occur (see Photo 2). When this occurs, besides angering owners, it befuddles the architect. Photo 1 (left) shows a nice through-wall flashing drip extended out from the wall, weeps and roofing terminated with a termination bar and sealant. What could be wrong?

PHOTO 2: Moisture intrusion at the base of this wall was the result of water circumventing the through-wall flashing and roof base flashing termination seen in Photo 1. A big concern with conditions, such as this, is the propensity of the materials to promote mold growth.

PHOTO 2: Moisture intrusion at the base of this wall was the result of water circumventing the through-wall flashing
and roof base flashing termination seen in Photo 1. A big concern with conditions, such as this, is the propensity of the materials to promote mold growth.

The exposed brick above the termination bar and below the stain- less-steel drip of the through-wall flashing is susceptible to water flowing down the surface of the brick. Water passing through the brick above is supposed to be weeped out; however, at the exposed brick above the termination bar, the water moves into the wall and has nowhere to go but inward.

The cost to repair these conditions can be, depending on the conditions, expensive. Repairs often require brick removal and through-wall flashing mitigation. In this particular case, be- cause there is a stainless-steel drip, my team recommended a stainless-steel counterflashing be pop-riveted to the drip and extended over the termination bar.

CHALLENGES

Why is the interface of roof base flashing and masonry through-wall systems so difficult for architects and roof consultants to detail? I believe it is because they have no clue it needs to be detailed as an interface, especially because detailing of appropriate through-wall systems is so sporadic. I endeavor in this article to change at least the knowledge part.

The detailing of this condition not only requires the ability to interface two building systems, but also requires considerable time to ensure specification of wall sectional details and roofing details are appropriately placed where the responsible trades will see them.

PHOTO 3: Still under construction, the stainless-steel counterflashing has been installed. The roof base flashing will terminate below the stainless-steel counterflashing receiver. Hutch prefers brick below the through-wall flashing and above the roof deck, though the masonry mortar joints below the through-wall flashing should have been struck flush.

PHOTO 3: Still under construction, the stainless-steel counterflashing has
been installed. The roof base flashing will terminate below the stainless-steel counterflashing receiver. Hutch prefers brick below the through-wall flashing and above the roof deck, though the masonry mortar joints below the through-wall flashing should have been struck flush.

NEW CONSTRUCTION

New construction provides us a clean slate to “do it right the first time”. The first order of business is to determine the height of the base flashing. This can be tricky with tapered insulation and slope structures with saddles. Let’s consider the following examples (see Detail 4, page 3):

EXAMPLE 1
We are dealing with a flat roof, tapered insulation, cover board and bead-foam insulation in ASHRAE Climate Zone 5, which has an R-30 minimum.

  • The roof drain is 32-feet away from the wall. Code requires 5.2 inches of insulation at 4 feet from the drain, so let’s assume 5 inches at the drain.
  • 1/4-inch tapered starts at 1/2 inch at 32 feet. That’s 8 inches, plus the starting thickness of 1/2 inch, which equals 8 1/2 inches.
  • Cover-board thickness is 1/2 inch.
  • Bead foam thickness is 3/16 inch for each layer. Let’s assume five layers, so 1 foot of bead foam.
  • Thus, the surface of the roof at the wall will be 15 inches above the roof deck.

Because you would like to work at the masonry coursing level and given that concrete masonry units (CMU) are nominal 8 inches, you are looking at placing the through-wall flashing 24 inches above the roof deck.

This 24-inch dimension of where to place the through-wall flashing needs to be placed on the building section and/or wall section because the mason, which will be onsite prior to the roofing contractor, will need to know this information.

This 24-inch height begs another termination question: What occurs at the roof edge with this height? Hold that thought for now. Terminations at intersections will be discussed in future articles.

Pages: 1 2 3

Code-mandated Thermal Insulation Thicknesses Require Raising Roof Access Door and Clerestory Sill Details

PHOTO 1: The new roof has been installed at SD 73 Middle School North and it can clearly be seen that the door and louver need to be raised. On this project, there were four such conditions.

PHOTO 1: The new roof has been installed at SD 73 Middle School North and it can clearly be seen that the door and louver need to be raised. On this project, there were four such conditions.

The most common concern I hear related to increasing insulation thickness (a result of increased thermal values of tapered insulation), especially in regard to roofing removal and replacement, is, “OMG! What about the roof access door and/or clerestory?” You can also include, for those knowledgeable enough to consider it, existing through-wall flashing systems and weeps.

I’m a bit taken aback by this concern; I have been dealing with roof access doors and clerestory sills for the past 30 years and, for the most part, have had no problems. My first thought is that roof system designers are now being forced to take these conditions seriously. This is a big deal! They just have no clue.

In the next few pages, I’ll review several possible solutions to these dilemmas, provide some detailing suggestions and give you, the designer, some confidence to make these design and detailing solutions. For the purpose of this article, I will assume reroofing scenarios where the challenge is the greatest because the conditions requiring modification are existing.

THE ACCESS DOOR

For many and perhaps most contractors who sell and, dare I say, design roofs, it is the perceived “large” expense of modifying existing conditions that is most daunting. Often, these conditions are not recognized until the door sill is several inches below the new roof sur- face. Not a good predicament. Planning for and incorporating such details into the roof system design will go a long way to minimizing costs, easing coordination and bringing less tension to a project.

PHOTO 2: The sill has been raised and new hollow metal door, frame and louver have been installed at SD 73 Middle School North. Door sill and louver sill flashing are yet to be installed, as are protective rubber roof pavers.

PHOTO 2: The sill has been raised and new hollow metal door, frame and louver have been installed at SD 73 Middle School North. Door sill and louver sill flashing are yet to be installed, as are protective rubber roof pavers.

Door access to the roof is the easiest method to access a roof. These doors are typically off a stair tower or mechanical penthouse and most often less than 12 inches above the existing roof as foresight was not often provided (see photos 1, 2 and 6 through 9). With tapered insulation thickness easily exceeding 12 inches, one can see that door sills can be issues with new roof systems and need to be considered.

Designers should first assess the condition of the door and frame, typically hollow metal. Doors and frames that are heavily rusted should not be modified and reused, but discarded, and new ones should be specified. The hardware too needs to be assessed: Are the hinges free of corrosion and distortion? Is the closure still in use or detached and hanging off the door frame? The condition of door sweeps, knobs, lockset and weather stripping should also be determined. Ninety-nine percent of the time it is prudent to replace these parts.

As the roof system design develops, the designer should start to get a feel for the thickness of insulation at the door. It is very important the designer also consider the thicknesses that vapor retarders, bead and spray-foam adhesives, cover and board and protective pavers will add. These can easily be an additional 4 inches.

PHOTO 3A: The new roofing at SD 73 Elementary North was encroaching on this clerestory sill and required that it be raised. As part of this project, the steel lintel was exposed. It was prepped, primed and painted and new through-wall flashing was installed.

PHOTO 3A: The new roofing at SD 73 Elementary North was encroaching on this clerestory sill and required that it be raised. As part of this project, the steel lintel was exposed. It was prepped, primed and painted and new through-wall flashing was installed.

Once the sill height is determined, the design of the sill, door and frame can commence. If the sill height to be raised is small—1 1/2 to 3 inches—it can often be raised with wood blocking cut to fit the hollow metal frame, flashed with the roofing membrane, metal sill flashing and a new door threshold installed, and the door and frame painted. This will, of course, require the removal of the existing threshold and door which will need to be cut down to fit and then bottom-sealed with a new metal closure (see details A and B, page 3).

When the door sill needs to be raised above 3 inches, the design and door considerations increase. Let’s consider that the door and frame is set into a masonry wall of face brick with CMU backup. Although most hollow metal doors are 7 feet 2 inches to match masonry coursing, after the modification the door may be shorter. For example, if a door is 7 feet 2 inches and you must raise the sill 5 inches, the new door and frame will need to be 6 foot 9 inches.
PHOTOS & ILLUSTRATIONS: Hutchinson Design Group Ltd.

Pages: 1 2 3

Atas Adds Roofinox Stainless Steel Roofing Products to Product Catalog

ATAS International Inc. has expanded its three-year partnership with Roofinox America with the addition of the company’s stainless steel roofing products to the 2016 ATAS complete product line catalog.  
 
The Roofinox product line consists of Roofinox Classic brush-rolled stainless steel, Roofinox Pearl bead-blasted stainless steel, Roofinox Plus ribbed stainless steel, Roofinox Chroma mirror-rolled stainless steel and Roofinox Tin-plated (Terne), the only tin-plated stainless steel roofing product specifically developed and manufactured for roll forming and fabricating. Designed to offer long-term sustainability and corrosion-resistance for wall-cladding, flashing, rainware, interior design and virtually all forms of roofing applications, each Roofinox product is also easy to seam, while offering superior aesthetics and reducing machine and tool wear.
 
“We are always looking to support our customers ranging from builders to appliance and toy manufacturers with the highest quality products available in the marketplace today,” says Gary Miller, ATAS’ OEM manager. “Roofinox supports this goal in two distinct areas. Their Tin-plated (Terne) is not only ideal for roll forming and fabricating, its popularity has grown with architects that enjoy the grey patina look these products achieve over time. We have found Roofinox stainless steel products to be more ductile and offer less spring back than similar products, in addition to providing excellent corrosion protection.”
 
“ATAS is a great partner,” says Dave Rowe, vice president at Roofinox America. “They know the market well and are striving to expand their customer base with products for architects and contractors. We are thrilled to be featured in the latest ATAS product line catalog and made available to their growing list of national clients.”
 
Originally developed to withstand the harsh climatic conditions found in Central Europe, the complete Roofinox stainless steel product line is ideal for applications ranging from rural, urban and light industrial areas to historic and commercial sites and extreme coastal environments. Available in coil or sheet, materials can be ordered by themselves so customers can do their own forming or products can be prefabricated by distributors like ATAS.  
 

Roofinox Displays Its Line of Stainless Steel Roofing Products to Contractors and Architects

Roofinox displays its line of stainless steel roofing products to contractors and architects attending the Moon in June Machinery Show in Lynchburg, Va. The annual exposition is specifically developed to showcase the latest advancements in roofing machinery and materials by N.B. Handy Company, HVAC equipment and supplies.

“We appreciate Roofinox’s participation in this year’s event,” says Paul Seufer, general manager of the N.B. Handy Machinery Group. “Our goal is to spotlight sheet metal fabrication machinery and materials available in the marketplace. This includes the interactive display of services in an environment where customers can experience processes and benefits first-hand. Roofinox’s stainless steel roofing products offer forming characteristics that run through our equipment.”

“It is a privilege to work alongside N.B. Handy,” says Dave Rowe, vice president at Roofinox America. “This event provides a wonderful opportunity for building professionals to interact with experts, ask questions and actually witness how our products work with their equipment under in-field conditions.”

Roofinox provides a range of tin-plated (Terne) products designed to offer sustainability and corrosion-resistance for wall-cladding, flashing, rainware, interior design and virtually all forms of roofing applications. Roofinox Tin-plated (Terne) is specifically developed and manufactured for roll forming and fabricating.

Developed to withstand climatic conditions found in Central Europe, the Roofinox Stainless Steel product line is ideal for applications ranging from rural, urban and light industrial areas to historic and commercial sites and coastal environments. With ongoing exposure to the elements, Roofinox Tin-plated (Terne’s) surface will develop an elegant matt grey patina finish over time.

A substitute for lead-coated copper, zinc/tin-zinc coated copper, Terne-coated materials, galvalume and lead, Roofinox Tin-plated (Terne) is available in coil or sheet. Materials can be ordered by themselves so customers can do their own forming or prefabricated by a Roofinox distributor.

Catalog’s Products Protect Asphalt Roofs against Water Infiltration

Union Corrugating’s “Drip Edge and Flashing Catalog” is a comprehensive look at the products the company offers to protect asphalt roofs against water infiltration.

Union Corrugating’s “Drip Edge and Flashing Catalog” is a comprehensive look at the products the company offers to protect asphalt roofs against water infiltration.

Union Corrugating’s “Drip Edge and Flashing Catalog” is a comprehensive look at the products the company offers to protect asphalt roofs against water infiltration. Union Corrugating’s large selection of drip edges, roll flashing, step flashing and other components are available in various colors and materials, including aluminum, steel, vinyl, copper and lead. The catalog provides information about sizes, colors and more. Ask a Union Corrugating sales representative for a copy of the catalog or download it from the company’s website under the Literature section.

Brochure Outlines Exterior, Self-adhering Waterproofing Products

MFM Building Products has issued its 2016 “Weatherproofing & Sealing Systems” brochure, which outlines the company’s full line of exterior, self-adhering waterproofing products.

MFM Building Products has issued its 2016 “Weatherproofing & Sealing Systems” brochure, which outlines the company’s full line of exterior, self-adhering waterproofing products.

MFM Building Products has issued its 2016 “Weatherproofing & Sealing Systems” brochure, which outlines the company’s full line of exterior, self-adhering waterproofing products. The eight-page brochure highlights each of MFM’s product categories: Roofing Membranes, Roofing Underlayments, Window Tapes & Flashing, Waterproofing Membranes and Construction Tapes. Each of the 27 brands features a color photograph of the product roll and overview description. The brochure back cover has a product comparison chart that details each product’s roll width and length, color availability, thickness, application temperature range and warranty information.

Metl-Span Updates CAD Library

Metl-Span announces important updated information in the Industrial, Commercial & Institutional Panels section of the CAD Library on the company website.

Below is the updated information, conveying the details along with modifications to each of the updated details. The information is located at the Metl-Span site within the CAD Library, under Resources.

Detail: Description (Modification)

  • 2H-VJ-01: Vertical joint with standard gasket (Newly created)
  • 2H-VJ-02: Vertical joint with sealant and backer rod (Newly created)
  • CI-CF-FSTN-01C: Attachment back fastener with girt clips (Proper panel orientation)
  • CI-CF-FSTN-01D: Attachment back fastener with rivets (Proper panel orientation)
  • CI-CF-BE-07: Trim details (Addition of part numbers)
  • CI-CF-DJ-01: Trim details (Addition of part numbers)
  • CI-CF-JB-01: Trim details (Addition of part numbers)
  • CI-CF-JB-02: Trim details (Addition of part numbers)
  • CI-CF-HD-01: Trim details (Addition of part numbers)
  • CI-CF-HD-02: Trim details (Addition of part numbers)
  • CI-CF-BE-08: Base Flashing (Addition of part numbers)

Locating the Source of Water Intrusion Can Be Tricky

The building in question features one whole face that is an aluminum-framed glass curtainwall. The curtainwall extends up above the roof lines, slopes up (from the vertical) forming a peaked skylight, which then slopes back toward the roofs that were holding water.

The building in question features one whole face that is an aluminum-framed glass curtainwall. The curtainwall extends up above the roof lines, slopes up (from the vertical) forming a peaked skylight, which then slopes back toward the roofs that were holding water.

As architects/roof consultants, there is nothing we hate more than to get a call from a client who says, “My new roof is leaking.” Yet, that is exactly what happened to us not long ago. My firm had put a new thermoplastic PVC roof system on a high-profile government building in central New Jersey. The owner was my long-time client, and I ran the project, so I was intimately familiar with it and utterly shocked to get this call about six months after the project was completed. We had just experienced a three-day nor’easter that began on Thursday night and ran straight through to Monday morning when the client arrived at the building to find numerous leaking areas.

I responded by immediately going to the building. I was accompanied by the roofing system manufacturer. As the client led us around the building, water was dripping through suspended ceilings all over, which gave us the sinking (almost apocalyptic) feeling you hope to never know. However, when we went up to examine the roof, much to our surprise, there was no blow off; no seams torn; in fact, no apparent defects at all. Our thermoplastic cap sheet looked perfect on the surface.

On the upper roof, aluminum-framed sawtoothed skylights were dripping water when the team first arrived. This gave the only clue to where the “smoking gun” may lie.

On the upper roof, aluminum-framed sawtoothed skylights were dripping water when the team first arrived. This gave the only clue to where the “smoking gun” may lie.

What we did find, however, was large amounts of water trapped between this cap sheet and the 90-mil bituminous base sheet underneath. This was creating large water-filled blisters on the roof that looked like an old waterbed as you walked up to and around them. No matter how hard we looked we just couldn’t find defects in the membrane surface or at any of the flashing connections or terminations that could be causing this. There was, however, a likely suspect looming adjacent to and above our roofs. The building experiencing the roof leaks has one whole face that is an aluminum-framed glass curtainwall. It extends up above the roof lines, slopes up (from the vertical) forming a peaked skylight, which then slopes back toward these roofs that were holding water. On the upper roof, sawtoothed skylights of the same construction were dripping water when we first arrived. This gave the only clue to where the “smoking gun” may lie.

METHODOLOGY

Water was dripping from the saw- toothed skylights into a planter in the 4-story atrium. The client said that was typical with all hard rains. Armed with this clue, and no other apparent explanation for such a large amount of water intrusion, the owner engaged us to find out what indeed was the root cause of this problem.

On the upper roof, aluminum-framed sawtoothed skylights were dripping water when the team first arrived. This gave the only clue to where the “smoking gun” may lie.

On the upper roof, aluminum-framed sawtoothed skylights were dripping water when the team first arrived. This gave the only clue to where the “smoking gun” may lie.

In a couple days, the dripping subsided and most of the water blisters had dissipated or at least were reduced and stabilized. In the interim, I assembled a team consisting of a roofing restoration contractor (this is not a rip and tear production contractor but one especially geared to finding problems and making associated repairs), skylight restoration contractor and testing agency capable of building spray racks onsite to deliver water wherever it’s needed. With this team, I embarked on a systematic investigation that would make any “detective” proud.

First, we plugged the roof drains and let water pool on the roof until the en- tire surface was wet. Meanwhile, “spot-ters” inside the building were looking for any sign of water intrusion using lights above the dropped ceilings. When this showed nothing, we began constructing spray racks and running water for set intervals on every adjacent surface rising above and surrounding the lowest roof in question. We first sprayed the exposed base flashings, then rose up to the counterflashing, then further up the wall, then to the sill of the windows above, etc. Then we would move laterally to a new position and start again.

The team first sprayed the exposed base flashings with water, then rose up to the counterflashing, then further up the wall, then to the sill of the windows above, etc. Testing moved laterally to a new position before starting again.

The team first sprayed the exposed base flashings with water, then rose up to the counterflashing, then further up the wall, then to the sill of the windows above, etc. Testing moved laterally to a new position before starting again.

This proved painstakingly tedious, but we knew that making the building leak was not enough; we had to move slowly and systematically to be able to isolate the location to determine what exactly was leaking and why. It is important when applying water this way to start low and only after a set period move upward, so when water does evidence itself as a leak, you know from what elevation it came.

After an entire day of spraying the rising walls surrounding the first (low) roof area, we could not replicate a leak. Somewhat frustrated—and rapidly burning the testing budget—we began the second day focusing on the adjacent peaked skylight, which is more than 75- feet long.

The team first sprayed the exposed base flashings with water, then rose up to the counterflashing, then further up the wall, then to the sill of the windows above, etc. Testing moved laterally to a new position before starting again.

The team first sprayed the exposed base flashings with water, then rose up to the counterflashing, then further up the wall, then to the sill of the windows above, etc. Testing moved laterally to a new position before starting again.

Again, we started low, where our base flashing tied into the knee-wall at the base of the skylight, below the aluminum-framed sill. Still no leaks. Late in the day, when we were finally up to the glass level, we sprayed water from the ridge and let it run right down the glass onto our roof below. Finally, we found some leaking occurring at a skylight flashing to wall connection. OK, that was reasonable to anticipate and easy to correct.

Pages: 1 2

Share This List with Customers to Help Them Prepare Their Roofs for Winter

We at Greenawalt Roofing Co. understand how busy the winter months can be. We also know that with a backload of work from the fall combined with cold or extreme weather conditions and shorter days, even the simplest jobs can take twice as long. Unfortunately, customers do not always know this and expect their issue to be fixed as soon as possible.

Greenawalt Roofing Co., Landisville, Pa., recommends installing Air Vent Inc.’s ShingleVent II, which, when combined with intake vents, provides an efficient and effective ventilation system to avoid ice dams.

Greenawalt Roofing Co., recommends installing Air Vent Inc.’s ShingleVent II, which, when combined with intake vents, provides an efficient and effective ventilation system to avoid ice dams. PHOTO: AIR VENT INC.

Help your customers by educating them about how to prevent and recognize potential problems before cold weather arrives. You can communicate with them directly, mail them a flyer or make a personal connection by email. Let them know how they can do a simple and safe roof inspection, or schedule an appointment for your team to do a professional and more thorough one. Finding trouble areas before they turn into full-fledged problems will not only save your customers money in the long run, which they will appreciate, but it can also help them avoid an emergency during the winter months.

Here are a few things you can tell your customers to do to be proactive for the upcoming winter months:

1. Do a quick inspection of the overall roof condition. Depending on the pitch of your roof, you may be able to see these things from the ground or by using binoculars. If you find some issues or cannot safely view the majority of your roof, we recommend you call us or a licensed roofing company for a thorough inspection to see what can be done before the harsh winter arrives.

Look for any damage that may have been done since the last time you took a look, and keep an eye out for some of the following warning signs:

  • Damaged shingles
  • Missing shingles
  • Loss of granulation
  • Decayed shingles
  • Wind damage
  • Broken or cracked shingles

2. Check wall or step flashing. Flashing are the metal coverings over the joints or seams where your roof intersects with other exterior home systems. Flashing prevents water from reaching the underlayment and from penetrating the exterior envelope and affecting your home’s ceilings and walls. If your flashing is unsealed, degraded, missing or damaged, then water will find a way underneath the metal strips. Although generally not a catastrophic system failure, it often shows up only after it is too late to prevent, so it is important to make sure these are intact for the winter.

3. Take a look at your skylights. This is another place where you should make sure the flashing is intact. Piled up snow and icy rains can put a lot of pressure on skylights and the flashing around their seals.

4. Review your chimney and other vent-pipe flashing. These can also become quick channels for water to enter the home. Accumulated snow slows water drainage off the roof, providing extra time for water to enter the home through even the smallest hole or crack, so it is important that these flashing are intact prior to the start of winter.

5. Inspect your attic. Your attic is a safe way to look for roofing issues, assuming there is a safe and easily accessible entrance into your attic space. Be sure to look for any water damage, dark spots, sagging wood and even daylight coming through the roof decking.

6. Clean your gutters! Gutters clear of debris do a great job of diverting water away from your house and protecting your home and foundation from the effects of water pooling. Although it is important year round to keep your gutters cleaned, it is especially important during the winter months. Because autumn has just ended, you probably have more leaves in the gutters than any other time of the year.

Try to keep your gutters clean throughout the winter, as well. They can easily become clogged. If your gutters are clogged, water (melted snow) begins to freeze and expand, which can cause severe damage to the fascia, causing the entire system to fail. The water also could start to freeze underneath the shingles, creating an ice dam.

7. Watch for ice dams. Winter’s most common roofing issues are ice dams. Ice dams form when snow sits on the roof and goes through a melt and freeze sequence. As the snow melts and flows down the roof and reaches the freezing surface below, it refreezes, causing the ice dam to form, which can damage shingles and underlayment. Seeking a release, the water backed up behind the ice dam seeps into cracks in the home’s exterior, leading to structural damage and mold growth.

Unfortunately, ice dams are a result of several factors and often require a licensed professional to remedy the problem. Inadequate insulation, poor ventilation and a combination of cold temperatures and sunny days lead to ice dams. You can prevent ice dams by ensuring your roof is adequately ventilated.

Helping your regular customers understand the steps they can take to avoid winter emergencies will give them peace of mind going into the colder months and, hopefully, allow you to focus on cold-weather emergencies. Plus, you may find them even more willing to send work your way when things calm down because of the trust you have built with them.

Roof Hatch Is Designed to Provide Energy Efficiency

The Bilco Co. has introduced a thermally broken roof hatch.

The Bilco Co. has introduced a thermally broken roof hatch.

The Bilco Co. has introduces a thermally broken roof hatch, an addition to its line of commercial specialty access products. This new product features a thermally broken frame and cover design to minimize heat transfer and the effects of condensation and to provide energy efficiency.

As a basic premise to energy loss, heat by nature wants to flow to a cooler space. During summer months, heat from the extremely hot roof exterior wants to radiate through the roof hatch into the cooler building interior. While standard roof-hatch insulation helps to reduce this heat gain, the metal construction of the roof hatch itself facilitates this temperature transfer, which can lead to increased utility costs and condensation issues on the underside of the roof hatch. In winter or colder months, this same energy transfer principle results in heat loss from inside the building and increased energy expenses, as well.

Bilco¹s new thermally broken roof hatch is designed with an element of low conductivity integrated between interior and exterior surfaces of the cover and frame to reduce temperature transfer. As an added benefit, these same thermally broken components dampen vibration for improved acoustic performance against outside noise. The product also features 3 square feet of polyisocyanurate insulation with an R-value of 18 in both the cover and curb for superior energy performance and a special cover gasket to minimize air leakage.

Thermally broken roof hatches are constructed of aluminum to attain high levels in recycled content and solar reflective index. The product will be offered in a number of standard single-leaf sizes and custom sizes can be specified. As with all Bilco’s roof hatches, the product features counter-balanced lift assistance for easy one-hand operation, an automatic hold-open arm, a heavy-duty slam latch with interior and exterior padlock hasps, and the innovative Bil-Clip flashing system for quick and easy installation on single-ply roofs.