Polymer Roofing Tiles Feature Quarried Look that Replicates Natural Slate

DaVinci Multi-Width Slate tiles come in five different widths—12-, 10-, 9-, 7- and 6-inch—and are available in a number of different color blends.

DaVinci Multi-Width Slate tiles come in five different widths—12-, 10-, 9-, 7- and 6-inch—and are available in a number of different color blends.

Following the successful introduction of a Single-Width Slate 12-inch tile with an enhanced profile in early 2015, DaVinci Roofscapes showcased the availability of the more realistic profiles on the company’s Multi-Width Slate and Bellaforté Slate polymer roofing tiles at the 2016 International Builders’ Show.

Details on the edges of the DaVinci slate tiles now have a more accurate quarried look that replicates natural slate. Deeper impressions in the tiles make them appear thicker, even though they’re the same weight as the previous tiles.

Low-maintenance slate tiles from DaVinci resist algae and moss growth, come in 50 standard colors and are rated for installation in areas experiencing high winds, hail and wildfires. DaVinci Multi-Width Slate tiles come in five different widths—12-, 10-, 9-, 7- and 6-inch—and are available in a number of different color blends. Single-Width Slate and Bellaforté Slate tiles from DaVinci are available in a 12-inch tile width, also in a variety of color blends.

Gateway Safety Receives Recognition Award from Industrial Buyers Group

Gateway Safety was awarded the President’s Club Recognition for achievement by the Industrial Buyers Group (IBC). Suppliers and distributors are recognized by IBC for their contributions during the year and rated on percentage growth.

“We annually recognize the distinguished suppliers who support the regional independent distributors who are part of the IBC marketing group,” says Rich Poole, IBC’s Industrial Division vice president. “Gateway’s support of our distributors’ sales initiatives and marketing programs earned them this distinction. We are proud to have Gateway as one of our select Preferred Suppliers, and are proud to recognize their contributions to our organization.”

Gateway Safety has been an IBC Preferred Supplier since 2010, partnering with IBC distribution members to provide safety products in eye, face, head, hearing and disposable respiratory protection. Matthew Love, Gateway Safety’s vice president, attended the meeting and accepted the award on the company’s behalf.

“We feel honored and are thankful to IBC for recognizing us with this award,” says Love. “Gateway Safety’s success within the IBC organization can be attributed to the great relationships we have formed with our IBC distribution partners. Safety equipment is a great fit for IBC distributors, since categories like eye and face protection can really complement an industrial product line,” continues Love. “Our achievement with IBC shows that safety products remain a growing market need.”

IBC is one of North America’s alliances of industrial, bearing and power transmission, electrical, and subassembly distributors with more than 550 branch locations.

AEP Span, ASC Building Products Granted IAPMO’s Uniform Evaluation Service Evaluation Report ER-0309

AEP Span and ASC Building Products have been granted IAPMO’s Uniform Evaluation Service (UES) Evaluation Report ER-0309 which demonstrates compliance to the 2012 and 2009 editions of the International Building Code (IBC) and the International Residential Code (IRC).

IAPMO’s UES program lowers the cost and increases the value to code officials of these reports by combining all of these recognitions in one concise report prepared by an internationally recognized product certification body.

The UES ER-0309 states the Single Skin Steel Roof and Wall Panels with Concealed Fasteners listed in the report satisfy the applicable code requirements which allow for the specification of AEP Span and ASC Building Products listed panels to architects, contractors, specifiers, and designers, and approval of installation by code officials. It also provides code officials with a concise summary of the products’ attributes and documentation of code compliance included in the report. The UES program is built upon IAPMO’s more than 70 years of experience in evaluating products for code compliance, and their evaluation services are ISO

Guide 65 Compliant by American National Standards Institute (ANSI) and meet the requirements of IBC/CBC Section 1703 for approval agencies.

ASC Profiles LLC is a subsidiary of BlueScope Steel and Nippon Steel & Sumitomo Metals Corporation. ASC Profiles is an industry leading manufacturer of cold-formed steel building components since 1971. ASC Profiles consists of three distinct business divisions, each serving a different market segment within the industry. ASC Steel Deck delivers a high quality line of structural roof and floor deck that has been fully tested for the commercial construction market. AEP Span provides architecturally engineered panels for steel roof and siding products for the commercial and industrial markets. ASC Building Products offers high quality steel roof and wall panels for the residential, light commercial, and agricultural markets.

Wind Loading on Rooftop Equipment

I recently attended a continuing-education conference for civil/structural engineers that discussed changes in the 2012 International Building Code (IBC) and the referenced ASCE 7-10 “Minimum Design Loads for Buildings and Other Structures”. During the seminar, the question was asked: “Who is responsible for the design of wind loading to rooftop equipment as defined in the IBC and Chapter 29 of ASCE 7-10?” The most accepted response was to add a section in the structural general notes that wind design on rooftop equipment is to be designed “by others”.

A structural engineer designed the metal support system and load transfer from the new HVAC unit down through the structure.

A structural engineer designed the metal support system and load transfer from the new
HVAC unit down through the structure.

The design requirements for wind loading on rooftop equipment have been included in previous editions of the IBC and ASCE 7, but significant changes have been included in ASCE 7-10. The increased attention is in part because of more severe wind events in recent years. While it is not the primary responsibility of the roofing consultant or contractor to evaluate the systems being placed on the roof, it is good to understand the code’s requirements for loading to rooftop equipment, how the load is determined and applied, and how the load is transferred to the building structure.

CODE REQUIREMENTS

The primary focus of the roofing professional in the IBC is concentrated on Chapter 15 (Roof Assemblies). While there are requirements in Chapter 15 addressing rooftop structures, these requirements, particularly in relation to wind loading, extend beyond Chapter 15. It is therefore imperative to be familiar with other sections of the code.

For instance, Section 1504 (Performance Requirements) refers the user multiple times to Chapter 16 (Structural Design) for wind-loading-design requirements. While roof manufacturers typically prequalify their systems based on various industry standards (ASTM, FM, ANSI, etc.), rooftop equipment supports are not typically prequalified because of the variability of placement and conditions. Similarly, new to this code cycle, Section 1509.7.1 includes the requirement for wind resistance for rooftop-mounted photovoltaic systems per Chapter 16 of the IBC. Other industries or trades have similar requirements. Section 301.15 of the 2012 International Mechanical Code and Section 301.10 of the 2012 Fuel and Gas Code require “equipment and supports that are exposed to wind shall be designed to resist the wind pressures in accordance with the IBC”.

Section 1609 of Chapter 16 (Wind Loads) applies to wind loading on every building or structure. Section 1609.1.1 provides two design options. The designer can use chapters 26 to 30 of ASCE 7-10 or Section 1609.6 of the IBC. Note however that Section 1609.6 is based on the design procedures used in Chapter 27 of ASCE 7-10, which does not address wind loading on rooftop equipment and thus is not applicable. Chapter 29 of ASCE 7-10 (Wind Loading on Other Structure and Building Appurtenances) contains the procedures used to determine wind loading on rooftop structures and equipment.

DETERMINING AND APPLYING WIND LOADING ON ROOFTOP EQUIPMENT

Properly specified ballasting blocks are designed and formed to better address the freeze/thaw cycle.

Properly specified ballasting blocks are designed and formed to better address the freeze/thaw cycle.


To determine wind loading on rooftop equipment, the first step is to identify the building Risk Category (formerly the Occupancy Category) and the building location. The Risk Category is determined from Section 1604.5 and Table 1604.5 of the IBC or Table 1.5-1 of ASCE 7-10. There are slight variations in the two codes but typically each will produce the same Risk Category.

The Risk Category and the location are then used to determine the design wind speed based on published wind-speed maps, available in Section 1609.3, figures 1609 A to C of the IBC, or Section 26.5.1, figures 26.5-1 A to C of ASCE 7-10. It can be difficult to read these maps to select the appropriate wind contour line, specifically along the East Coast. The Redwood City, Calif.-based Applied Technology Council (ATC), a non-profit that advances engineering applications for hazard mitigation, has digitized the maps providing a valuable resource for determining design wind speeds by GPS coordinates or the building’s address. Visit ATC’s wind-speed website. Note however that it is always advisable to cross check this design wind speed with the maps in the adopted code or with the local building authority.

PHOTOS: MIRO INDUSTRIES INC.

Pages: 1 2

Coating a Roof? Don’t Forget Fire Ratings

Fire tests are one of the most important system tests for roof coatings, and it is essential when specifying and applying a coating over an existing roof in a maintenance or repair setting to ensure the roof system’s fire rating is not negatively affected.

TEST METHODS FOR FIRE TESTS

The International Building Code (IBC), first published in 2000, brought together several regional codes into one central, national code and facilitated the acceleration of code adoptions across the U.S. Today, most of the U.S. follows a statewide adoption process for the IBC for Roof Assemblies and Rooftop Structures; some areas do not, which can make code enforcement tricky. Some areas still follow local adoption and may refer to older versions of the code instead of the most current 2012 IBC.

According to the most recent IBC, roof assemblies and coverings are divided into classes A, B, C or “Nonclassified” and are tested in accordance with UL 790 or ASTM E 108. These tests measure the spread of flame, recording whether the material you put on the roof will cause the flame to spread too far on the roof. The UL 790 inaugurated modern fire tests about 100 years ago and, as such, incorporates a century of data and history about roof coatings that may broaden the reach of what certifications the test provides.

“Many see UL 790 as the preferred fire test,” notes Steve Heinje, technical service manager with Quest Construction Products LLC. “It is interesting to note the ASTM E 108 test is deemed by the code requirements an equivalent test.” The ASTM E 108 is a consensus version of UL 790 and can be run by any qualified and accredited test laboratory. Many test laboratories, such as FM Approvals, conduct testing using ASTM E 108.

COMPONENTS OF FIRE TESTING

The roof coating is just one component in the fire rating of a roof assembly; other components include slope, the coating substrate, whether the roof deck is combustible and whether the roof is insulated. These factors, taken together, will determine the roof system’s fire rating.

SLOPE
Although there are exceptions, most fire ratings are done for slopes of under 3/4 inch for commercial roofs, and coatings tend to be recommended for application to a roof with 2 inches or less slope. Slope is an important factor to consider because special coatings may be needed for high slope transitions.

SUBSTRATE
The substrate or membrane type is another vital component of fire testing because the substrate to which the coating is applied could affect the flammability of the roof system. When coating over an existing roof, one should note what existing roofing substrate is being coated over—whether it’s BUR, mod bit, concrete, metal, asphalt or another type of substrate.

COMBUSTIBLE VS. NON-COMBUSTIBLE ROOF DECK
Most coatings are tested over noncombustible decks, but additional and challenging tests are required for the use of combustible decks. It is much more difficult to achieve a Class A rating when covering a wood deck.

INSULATION
Again, it is important to note the materials of the existing roof being coated because these components can affect the flammability of the roof system. Polymeric insulations often reduce the allowable slope for a given system.

PROPER APPLICATION OF THE ROOF COATING

Another significant consideration is that the coating is applied at the appropriate thickness and rate.

“One big thing out of the coating manufacturer’s control is that the applicator uses the recommended or test-required thickness and/or rate at the point of application,” points out Skip Leonard, technical services director with Henry Co. Proper application encompasses parameters, such as the final dry-film thickness, the use of granules or gravel, use of reinforcements and even the number of coats. Accounting for these details is an integral part of installing a rated system.

Once assembled, the roof covering will be granted a Class A, B or C rating by approved testing agencies, typically through UL 790 or ASTM E 108, depending on how effective the roof proves to be in terms of fire resistance. Rated coating solutions exist for just about any existing roof system recover or coating application and often can achieve a Class A rating.

Learn More
Visit the Roof Coatings Manufacturers Association website to locate a roof-coating manufacturer who can help you choose a roof coating most appropriate for your roof system. For more information about roof-coating fire ratings, check out FM Approval’s RoofNav online database for up-to-date roofing-related information or the UL Online Certifications Directory.

Against the Wind

The city of Moore, Okla., recognizes it cannot keep doing things the way they’ve always been done. You may recall on May 20, 2013, an EF5 tornado did extensive damage to the town. The new residential construction codes are based on research and damage evaluation by Chris Ramseyer and Lisa Holliday, civil engineers who were part of the National Science Foundation Rapid Response team that evaluated residential structural damage after the May 2013 tornado.

“A home is deconstructed by a tornado, starting with the breaching of the garage door,” Ramseyer explains. “The uplift generated by the wind causes the roof to collapse until the pressure pulls the building apart. These new residential building codes could possibly prevent that in the future.”

The new codes require roof sheathing, hurricane clips or framing anchors, continuous plywood bracing and windresistant garage doors. Moore’s new homes are required to withstand winds up to 135 mph rather than the standard 90 mph.

Although the city of Moore deserves to be commended for passing a more stringent building code less than one year after the 2013 tornado, this wasn’t the first damaging tornadic event Moore had experienced. The town also made national headlines in 1999 when it was hit by what was then considered the deadliest tornado since 1971. Moore also was damaged by tornadoes in 1998, 2003 and 2010. In my opinion, it was time for the Moore City Council to do the right thing by its citizens.

As extreme weather events occur more frequently, more emphasis is being placed on commercial roof wind resistance, as well. Robb Davis, P.E., recently attended a continuing-education conference for civil/structural engineers that discussed changes in the 2012 International Building Code and the referenced ASCE 7-10 “Minimum Design Loads for Buildings and Other Structures”. During the seminar, it became clear to Davis that nobody is specifically responsible for the design of wind loading to rooftop equipment as defined in the IBC and Chapter 29 of ASCE 7-10. Therefore, Davis reached out to Roofing because he believes it’s important roofing professionals understand the code requirements for wind loading to rooftop equipment, how the load is determined and applied, and how the load is transferred to the building structure. Davis shares his insight in “Tech Point”.

As Davis points out in his article, by better understanding wind loads on rooftop equipment, roofing professionals will be even better positioned to lead the design and construction industry in creating more resilient roofs and, ultimately, strengthening the structure and protecting the people underneath.