Project Profiles: Education Facilities

Maury Hall, U.S. Naval Academy, Annapolis, Md.

TEAM

Roofing Contractor: Wagner Roofing, Hyattsville, Md.
General Contractor: C.E.R. Inc., Baltimore, (410) 247-9096

The project included 34 dormers that feature double-lock standing-seam copper and fascia metal.

The project included 34 dormers that feature double-lock standing-seam copper and fascia metal.

ROOF MATERIALS

Wagner Roofing was awarded the complete replacement of all roof systems. These included an upper double-lock standing-seam copper roof system, a bullnose copper cornice transition, slate mansard, 34 dormers with double-lock standing-seam copper and fascia metal, eight copper hip metal caps and a continuous built-in gutter with decorative copper fascia. Each of the dormers also had a copper window well.

The upper standing-seam roof was removed and replaced with 24-inch-wide, 20-ounce copper coil rollformed into 1-inch-high by 21-inch-wide continuous standing-seam panels that matched the original profile. The eave bullnose, which also served as the mansard flashing, was removed and returned to Wagner Roofing’s shop where it was replicated to match the exact size and profile.

The 34 dormer roofs were replaced with 20-inch-wide, 20-ounce copper coil formed into 1-inch-high by 17-inch- wide continuous standing-seam panels. The decorative ornate fascia of the dormers was carefully removed and Wagner’s skilled craftsmen used it as a template to develop the new two-piece copper cornice to which the roof panels locked. The cheeks and face of the dormers were also re-clad with custom-fabricated 20-ounce copper.

The oversized built-in-gutter at the base of the slate mansard was removed and replaced with a new 20-ounce copper liner custom-formed and soldered onsite. The replacement included a specialty “bull-nosed” drip edge at the base of the slate and an ornate, custom-formed fascia on the exterior of the built-in gutter. The decorative copper fascia included 85 “hubcaps”, 152 “half wheels” and 14 decorative pressed-copper miters. The original hubcap and half-wheel ornaments were broken down and patterns were replicated. Each ornamental piece was hand assembled from a pattern of 14 individual pieces of 20-ounce copper before being installed at their precise original location on the new fascia. The miters were made by six different molds, taken from the original worn pieces, to stamp the design into 20-ounce sheet copper.

In all, more than 43,000 pounds of 20-ounce copper was used on the project.

Copper Manufacturer: Revere Copper Products

ROOF REPORT

Maury Hall was built in 1907 and was designed by Ernest Flagg. Flagg designed many of the buildings at the U.S. Naval Academy, including the Chapel, Bancroft Hall, Mahan Hall, the superintendent’s residence and Sampson Hall. His career was largely influenced by his studies at École des Beaux-Arts, Paris. Examples of Flagg’s Beaux-Arts influence can be found in the decorative copper adorning the built-in gutter on building designs.

Maury Hall currently houses the departments of Weapons and Systems Engineering and Electrical Engineering. The building sits in a courtyard connected to Mahan Hall and across from its design twin, Sampson Hall.

PHOTO: Joe Guido

Pages: 1 2 3 4 5 6 7 8 9 10 11 12

Built-in Gutters Should Be Carefully Inspected, Restored and Maintained

Sheet-metal gutter linings, whether made of copper, lead or both, are relatively involved and require the services of a highly skilled artisan craftsman.

Sheet-metal gutter linings, whether made of copper, lead or both, are relatively involved and require the services of a highly skilled artisan craftsman.

Built-in gutters may be the most complicated system in the building envelope, yet they are also the most elusive when you start searching for information about them. Sometimes called Yankee gutters, box gutters or even Philadelphia gutters, it’s no wonder they remain a mystery to many. Built-in gutter systems are actually built into the cornice structure and drain through internal or external leaders. They are not readily visible from the ground, further lending to the mystery of their design and function. Because they are integrated into the structure, built-in gutter linings that fail will cause extensive damage to the cornice and sometimes also the interior of the structure.

In “Traditional Rainwater Conductor Systems of the 18th and 19th Centuries,” Karen Dodge of the U.S. National Park Service, Washington, D.C., states built-in gutters were first adopted in North America during the 18th century in high-style Georgian and Federal-style buildings, usually institutional or commercial, where refined architectural qualities were desired. Although built-in gutters are highly functional, they also serve an aesthetic purpose. As structures were erected in the classical order with elaborate cornices and entablature, it became necessary to collect and channel rainwater without detracting from the architectural character of the building. Built-in gutters served this function well, hidden from sight and shedding water to the exterior.

Built-in gutters, today, are typically constructed in the same manner as they have been since the 18th century. They are wooden boxes with bottoms sloped toward the outlets where water is drained to leaders, or conductor pipes, that channel the water away from the building. The first gutters in this style were actually troughs or box gutters, carved out of wood and rubbed with linseed oil or painted to protect the wood. Corners and seams were bonded with lead wedges. Needless to say, maintenance was critical to their success or failure. Later, the advent of sheet lead allowed for broader gutters, as linings covered the wooden troughs. By the end of the century, copper became available in the U.S. and a popular choice for gutter linings because of its durability and the functional nature of the material in a sheet-metal application.

INSPECTION AND MAINTENANCE

The most common sign of water penetration is peeling paint and decay in the wood soffit under the gutter. Other signs are dark stains and mildew or deterioration of masonry. Water infiltration may be visible in attic spaces or areas beneath the gutters where plaster and other interior finishes evidence water damage. The sooner a leak or area vulnerable to failure is addressed, the smaller the scope and cost of repairs. Cleaning out leaves and debris from gutters as often as necessary is essential for durability and proper performance.

Careful inspection by a competent roofer is critical to the longevity and success of the system. He or she will look for defects, such as localized damage caused by fallen limbs or other debris, cracks from expansion and contraction at joints or folds, or pinholes from corrosion. Roofing tar and other bituminous compounds should never be used to patch, repair or coat gutter linings. It makes the condition of the gutter indeterminable, corrodes metal linings, will crack and fail quickly, and cannot be removed without destroying the lining. Ice damming is not uncommon in the winter but should not be removed with sharp tools for obvious reasons.

When tin or terne-coated steel gutter linings fail, water intrusion will occur and cause wood rot. Eventually, architectural details will be lost and replacement will be necessary.

When tin or terne-coated steel gutter linings fail, water intrusion will occur and cause wood rot. Eventually, architectural details will be lost and replacement will be necessary.

RESTORATION

Restoration of long-neglected built-in gutter systems that leak and have caused decay in the cornice and roof structure is often complicated and can be costly. But once the work is completed, a regularly maintained, well-detailed system can last 60 to 100 years or more, depending on the life of the metal lining. A preservation architect or consultant should inspect the building, propose treatment options, develop working drawings and specifications, and supervise bidding and construction. Temporary protection and permanent repairs should be performed by a roofer experienced in this specialty on historic buildings.

“We encourage restoration of historic built-in gutter systems,” says Michael Devonshire, a building conservator and principal at Jan Hird Pokorny Associates, New York. “The use of modern building materials as an adjunct to traditional materials boosts longevity.” Devonshire states the typical steps involved with a built-in gutter restoration involve:

  • Removing the gutter lining and 2 feet of the roof covering above the curbing of the gutter.
  • Repairs to rotted or otherwise deteriorated frame work. Where rafter ends or lookouts are rotted, install sisters (new rafter ends adjacent to old ones) or scarf in new wood and sisters.
  • Replacing the old wooden gutter bottom with a sustainable wood material, such as cedar or kilndried- after-treatment (KDAT) plywood. KDAT is treated for resistance to decay, minimal expansion and contraction, and increased longevity.
  • Installing the gutter lining: an elastomeric ice-and-water shield on the bottom (not always required); building felt; a slip-sheet of rosin paper; and copper on top (16 or 20 ounce, depending on the dimensions of the gutter).
  • Installing the roof covering on the roof deck above the gutter. This includes 2 feet of elastomeric ice-and-water shield (or copper flashing) beneath.
  • Repairing or replacing cornice mouldings, brackets and other architectural woodwork.

PHOTOS: WARD HAMILTON

Pages: 1 2