Easy-to-Use Discs Enable Induction Welding of PVC and TPO Membranes Over EPS Insulations

With induction welding, the membrane is heat bonded to the top of each plate and there are no penetrations in the membrane. Photo OMG

Over the past ten years, North American roofers have begun to adopt induction welding as a fast, simple and secure way to mechanically attach TPO and PVC membranes. The method also helps create a high-performance roof assembly by eliminating fastener penetrations of the membrane.

For most of its history, induction welding was limited to installations over thermoset insulations such as polyiso or over other rigid insulations with a cover board. But now, a deceptively simple and easy-to-use disc enables roofers to use induction welding over expanded polystyrene (EPS) insulations that don’t have cover boards. The result is faster and more affordable insulation installation and lower fatigue for work crews.

The Induction Welding Method in Brief

A roof fastener manufacturer pioneered induction welding attachment as a way for roofers to streamline TPO and PVC membrane installation, while avoiding membrane penetrations, for a more watertight roof assembly.

A roofing technician seals the seam with hot-air welder. Photo: Insulfoam

In a typical mechanically fastened membrane system, roofers secure the membrane with 2-inch to 3-inch diameter plates on the seams held down by screws that pass through the membrane and insulation layers to the underlying deck. With the induction welding method, each plate becomes a fastening point for the membrane, and the membrane is heat bonded to the top of each plate. With this method, crews screw down the insulation layer as usual, then unroll the membrane over the insulation. They then place a stand-up or handheld induction welding tool on the membrane at each plate location. In less than five seconds, the tool heats the plate under the membrane to about 400 degrees Fahrenheit, bonding the membrane to the plate. Heating is accomplished via electromagnetic induction between the tool and the plate, rather than via direct application of heat (think of an induction cooktop compared to conventional stove heating coils). Induction welding meets the FM 4470 approval standard and is accepted by most membrane manufacturers.

Induction welding typically requires 25 percent to 50 percent fewer fasteners and plates than typical mechanically fastened installations, as well as fewer seams, resulting in both labor and material savings. As the fasteners are spread across the roof in a grid pattern, the resulting assembly enhances resistance to wind uplift and reduces membrane sheet flutter.

EPS Insulations and Induction Welding

Until now, the induction welding process could not be used with EPS insulations that lacked a cover board, as

EPS insulations can be used in both new construction and roof recovers. Photo: Insulfoam

the 400-degree heated plates caused the insulation to soften and draw back. This resulted in numerous depressions in the roof assembly (at each fastener location), where water could pond.

To enable use of the induction welding process with a broader range of rigid foam insulations, fastener manufacturers have developed a simple solution. For each fastener, crews place a thin disc between the fastener plate and insulation. This separation medium protects the EPS from the high heat of the induction welding process, without interfering with the bond between the membrane and the fastener plate. Manufacturers typically refer to these separators as “induction welding cardboard discs.” While they are paper-based products, calling them “cardboard” understates their performance, as they are densely compressed and have a moisture-resistant coating, so they work well in high-performance roof systems.

Why This Matters

For roofers who prefer using EPS insulations for the products’ thermal performance and ease of installation, the discs allow them also to achieve the benefits of the induction welding process discussed above.

Induction welding cardboard discs enable use of the induction welding attachment process for TPO and PVC membranes over EPS insulation. Photo: Insulfoam

While induction welding has always been possible using EPS insulation products that have standard cover boards, the discs make it possible to induction weld over EPS products with glass facers and fanfold EPS with polymeric facers. Glass-faced EPS products can be used in new applications and recovers while roofers typically use fanfold EPS in roof recovers.

Fanfold EPS bundles, like R-TECH FF and others, are available in standard sizes up to 200 square feet, comprised of 25 panels that are 2 feet by 4 feet each, and come in various thicknesses. A typical two-square bundle weighs less than 11 pounds, so it is easy for one person to carry. EPS fanfold bundles require fewer fasteners per square foot than most roofing insulations and are less expensive than virtually every recover board. The man-hours needed to install fanfold bundles are about 60 percent less than working with individual sheets. Material costs are also lower than wood fiber, perlite, or gypsum board. On large projects, the

Induction welding typically requires fewer fasteners and plates than mechanically fastened applications, resulting in both labor and material savings. Photo: OMG

total savings can add up to tens of thousands of dollars. As with other EPS insulations, the product’s light weight also means less crew fatigue.

As roofers look for ways to create cost-effective, high-quality roof assemblies, new methods provide the opportunity to boost the bottom line by reducing labor and material costs. A simple, affordable disc now enables you to obtain the benefits of both the induction welding method for fastening TPO and PVC membranes and the advantages of EPS insulations.

Fasteners Designed to Attach Sheeting over Rigid Insulation

Triangle Fastener Corporation expands their line of BLAZER Drill Screws with new sizes designed to attach metal panels over rigid insulation. These unique screws have two different threads with a gap in between that eliminates jacking of the panel during installation.

Features and benefits:

  • A special ¼-14 “high thread” under the screw’s head secures the metal panel tightly against the head for optimal seal
  • Unique unthreaded section eliminates the “jacking” of the panel during installation, improving the drilling and tapping performance
  • BLAZER 3 drill point for fast penetration with less effort
  • Lengths: 1-7/8-inch, 2-3/8-inch, 3-1/4-inch and 4-inch
  • TRI-SEAL 1,000-hours salt spray coating provides over 20-times more corrosion protection than screws with commercial zinc plated
  • Available with a zinc alloy cap or stainless steel cap providing corrosion resistance in harsh environments

For more information, visit www.trianglefastener.com.

New Commercial Insulation Board Designed for High Load-Bearing Applications

Kingspan Insulation has expanded its commercial product offering by introducing GreenGuard Type VII XPS Insulation Board. The product is designed for high load-bearing engineered applications requiring insulation with a minimum compressive strength of 60 psi. According to the manufacturer, Type VII XPS is primarily used in commercial roofing applications, such as protected membrane and pedestal paver systems.

According to the manufacturer, the insulation board offers an R-value of 5.0 per inch of thickness and meets ASTM C578 Type VII requirements. The product retains its insulating properties over time, has high water resistance and is HCFC-free. In addition to commercial roofing applications, it also is suitable for low-temperature freezer floors, cold-storage facility floors, ice rinks and parking decks.

“Kingspan continues to be committed to our customers and expanding our product offerings to the North American market,” said Ryan Sullivan, managing director, Kingspan Insulation North America. “Our recent investment into a new, state-of-the-art XPS insulation manufacturing line is allowing us to increase capacity and expand our GreenGuard XPS product portfolio to include insulation board with higher compressive strengths.”

Kingspan Insulation has expanded its commercial product offering by introducing GreenGuard Type VII XPS Insulation Board. The product is designed for high load-bearing engineered applications requiring insulation with a minimum compressive strength of 60 psi. According to the manufacturer, Type VII XPS is primarily used in commercial roofing applications, such as protected membrane and pedestal paver systems.

According to the manufacturer, the insulation board offers an R-value of 5.0 per inch of thickness and meets ASTM C578 Type VII requirements. The product retains its insulating properties over time, has high water resistance and is HCFC-free. In addition to commercial roofing applications, it also is suitable for low-temperature freezer floors, cold-storage facility floors, ice rinks and parking decks.

“Kingspan continues to be committed to our customers and expanding our product offerings to the North American market,” said Ryan Sullivan, managing director, Kingspan Insulation North America. “Our recent investment into a new, state-of-the-art XPS insulation manufacturing line is allowing us to increase capacity and expand our GreenGuard XPS product portfolio to include insulation board with higher compressive strengths.”

LEARN MORE

Visit: www.kingspaninsulation.us
Call: (678) 589-7320
Email: info@kingspaninsulation.us

Single-Ply Roofing Best Practices: Doing Everything Right the First Time.

Figure 1: Designing resilient roof systems is the best of practices. When developing details, we find it very helpful to draft out the roof system (for each different system), noting materials and installation methods. Photos: Hutchinson Design Group

Single-ply membranes have risen from being the “new guy” in the market in the early ’80s to become the roof cover of choice for most architects, consultants and contractors. Material issues have for the most part been resolved, and like no other time in recent history, the industry is realizing a period of relative calm in that regard. Whether EPDM, TPO or PVC, the ease of installation, the cleanliness of the installation (versus the use of hot or cold bitumen), the speed at which they can be installed, and the material costs all blend to make these materials a viable option for watertight roofing covers. But with this market share comes issues and concerns, some of which are hurting owners, giving forensic consultants such as myself too much business, enriching attorneys, and costing contractors and, at times, designers dearly.

Following are some of my thoughts on various issues that, in my opinion, are adversely affecting single-ply membrane roof systems. Paying attention to these issues will bring about best practices in single-ply applications.

Specifying the Roof by Warranty

OMG, can architects do any less? Don’t get me started. The proliferation of “canned” Master Specs which call for a generic 10-year or 20-year warranty and then state to install the product per manufacturer’s guidelines is disheartening. Do

Figure 2: Coordinating with the mechanical engineer in the detailing of the pipe penetrations is critical. Here you can see all the components of the curb, penetrations, roofing and waterproofing are noted. We recommend that the same detail be on the mechanical sheets so that at least an 18-inch curb is known to all. Photos: Hutchinson Design Group

designers realize that manufacturers’ specifications are a market-driven minimum? When architects leave out key details, they are simply relying on the roofing contractor to do what is right. This deserves another OMG. The minimum requirements for a warranty can be very low, and the exclusions on a warranty quite extensive. Additionally, a design that calls for products to be installed based on achieving a warranty may result in a roof system that does not meet the code. Owners are often oblivious to the warranty requirements, and all too often fail to ensure the standard of care until the service life is shortened or there is storm damage — sometimes damage the roof should have withstood if it were properly designed and detailed.

If one is not knowledgeable about roof system design, detailing and specification, then a qualified roof consultant with proven experience in single-ply membranes should be retained. Roof systems and their integration into the impinging building elements need to be designed, detailed and specified appropriately for the building’s intended use and roof function. By way of example, we at Hutchinson Design Group typically design roof systems for a 40- to 50-year service life (see Figure 1); the warranty at that point is nice, but almost immaterial. Typical specifications, which are project specific, cover all the system components and their installation. They are typically 30 pages long and call out robust and enhanced material installations.

More Than the Code

I recently had a conversation with a senior member of a very large and prominent architectural firm in the Chicago area and inquired about how they go about designing the roof systems. The first thing he said was, “We do what is required by code.”

Photo 1: The roof drain sump pans shown here were provided and installed by the plumbing contractor, not the steel deck installer. Having the roof drain level with the top of the roof deck allows for a proper integration of the roof drain and roof system.

What I heard was, “We give our clients the absolute poorest roof the code allows.” An OMG is allowed here again. Does it really need to be said again that the code is a minimum standard — as some would say, the worst you are allowed to design a building by law? Maybe you didn’t realize it, but you are allowed to design above the code. I know this will shock a few of you, but yes, it’s true. Add that extra anchor to prevent wood blocking from cupping. Add extra insulation screw fasteners to improve wind uplift resistance; if too few are used, you may meet the code, but your insulation will be susceptible to cupping. Add that extra bead of polyurethane adhesive. (If I specify 4 inches on center, then perhaps by mid-day, on a hot and humid day, I might get 6 inches on center — as opposed to specifying 6 inches or 8 inches on center, and getting 12 inches on center in spots.) Plan for construction tolerances such as an uneven decks and poorly constructed walls. Allow for foot traffic by other trades. These types of enhancements come from empirical experiences — otherwise known as getting your butt in the ringer. Architects need more time on the roof to observe what goes on.

It’s About Doing What is Right

Doing it right the first time isn’t all that difficult, and it’s certainly less stressful than dealing with the aftermath of doing so little. The cost of replacing the roof in the future could easily be more than double the original cost. Twenty years ago, I

Figure 3: Coordinating with the plumbing engineer, like coordinating with the mechanical engineer, is a requirement of best practices. In this drain detail, we can see the sump pan is called out correctly, and the roof drain, integration of the vapor barrier, extension ring, etc., are clearly defined. Photos: Hutchinson Design Group

chaired an international committee on sustainable low-slope roofing. At that time, the understanding of sustainability was nil, and I believe the committee’s Tenets of Sustainability, translated into 12 languages, helped set the stage for getting designers to understand that the essence of sustainability is long-term service life. That mantra seems to have been lost as a new generation of architects is at the helm. This is unfortunate, as it comes at a time when clients no longer ask for sustainable buildings. Why? Because they are now expected. The recent rash of violent and destructive storms — hurricanes, hail, intense rain, high winds and even wildfires — have resulted in calls for improvement. That improvement is called resiliency. If you have not heard of it, you are already behind. Where sustainability calls for a building to minimize the impact of the building (roof) on the environment, resiliency requires a building (roof) to minimize the impact of the environment on the building. This concept of resiliency requires designing a roof system to weather intense storms and to be easily repaired when damaged. (Think of Puerto Rico and consider how you would repair a roof with no power, limited access to materials, and manpower that might not be able to get to your site.)

Achieving resiliency requires the roof system designer to:

  1. Actually understand that roofs are systems and only as good as their weakest link. Think metal stud parapet and horizontal base anchor attachment; only forensic consultants and attorneys like to see screws into modified gypsum boards.
  2. Eliminate your old, out-of-date, incorrect details. Lead vent flashing and roof cement cannot be used with single-ply membrane.
  3. Design the roof system integration into associated barrier systems, such as where the roofing membrane (air/vapor retarder) meets the wall air barrier. You should be able to take a pencil and draw a line over the wall air barrier, up the wall and onto the roof without lifting it off the sheet. If you cannot, you need to redesign. Once you can, you need to consider constructability and who may get there first — the roofer or air barrier contractor. Then think material compatibility. Water-based air barrier systems don’t react well when hit with a solvent-based primer or adhesive.

    Photo 2: This roof drain is properly installed along with 6 inches of insulation and a cover board. The drain extension ring is 1/2 inch below the top of the cover board so that the water falls into the drain and is not held back by the clamping ring, resulting in ponding around the roof drain.

    Perhaps the roofing needs to be in place first, and then the air barrier brought over the top of the roofing material. This might require a stainless-steel transition piece for incompatible materials. Maybe this requires a self-adhering membrane over the top of the roof edge prior to the roofing work, as some membranes are rather rigid and do not bend well over 90-degree angles. You as the designer need to design this connectivity and detail it large and bold for all to see.

  4. Design the roof system’s integration into the impinging building elements, including:
  • Roof curbs for exhaust fans: Make sure they are insulated, of great enough height, and are not installed on wood blocking.
  • Rooftop unit (RTU) curbs: The height must allow for future re-roofing. Coordinate with the mechanical engineer regarding constructability – determine when the curb should be set and when the HVAC unit will be installed. Roof details should be on both the architectural and mechanical drawings and show the same curb, drawn to scale. Be sure the curb is insulated to the roof’s required R-value. Avoid using curb rails to support mechanical equipment. The flashing on the interior side of the rails may be inaccessible once the equipment is placed. Use a large curb where all four sides will remain accessible.
  • Piping penetrations: Detail mechanical piping penetrations through the roof and support of same, where insulation and waterproofed pipe curbs are needed (see Figure 2). If you are thinking pourable sealer pocket, stop reading and go sign up for RCI’s Basics of Roof Consulting course.
  • Roof curbs, RTU, pipe curbs and rails: Coordinate their location and show them on the roof plan to be assured that they are not inhibiting drainage.
  • Roof drains: Coordination with the plumbing engineer is essential. Sump pans should be installed by the plumbing contractor, not the steel deck installer (see Photo 1), and the location should be confirmed with the structural engineer. Be sure drains are located in the low point if the roof deck is structurally sloped — and if not, know how to design tapered insulation systems to move water up that slope. Do not hold drains off the deck to meet insulation thickness; use threaded extensions. Be sure any air/vapor barrier is integrated into the curb and that the insulation is sealed to the curb. I like to hold the drain flange a half-inch down below the insulation surface so that the clamping ring does not restrain water on the surface. Owners do not like to see a 3-foot black ring at the drain, where ponding water accumulates debris (see Figure 3 and Photo 2).
  1. Understand the roof’s intended use once the building is completed. Will the roof’s surface be used for anything besides weather protection? What about snow removal? Will there be excessive foot traffic? What about mechanical

    Photo 3: Gaps between the roof insulation and roof edges, curbs and penetrations are prevalent on most roofing projects and should be sealed with spray foam insulation as seen here. It will be trimmed flush once cured.

    equipment? Photovoltaic panels? Yes, we have designed roofs in which a forklift had to go between penthouses across the roof. Understanding how the roof will be used will help you immensely.

  2. Understand the construction process and how the roof might be used during construction. It is amazing how few architects know how a building is built and understand construction sequencing and the impact it can have on a roof. I firmly believe that architects think that after a lower roof is completed, that the masons, carpenters, glazers, sheet metal workers, welders, pipe fitters, and mechanical crews take time to fully protect the newly installed systems (often of minimal thickness and, here we go again, without a cover board — OMG) before working on them. I think not. Had the architect realized that temporary/vapor retarders could be installed as work surfaces, getting the building into the dry and allowing other trades to trash that rather than the finished roof, the roof system could be installed after those trades are off the roof.
  3. Coordinate with other disciplines. Roof systems cannot be designed in a vacuum. The architect needs to talk to and involve the structural, mechanical and plumbing engineers to ensure they realize the importance of essential details. For example, we cannot have steel angle around the drain whose flange rests on the bar joist, thus raising the roof deck surface at the roof drain. Ever wonder why you had ponding at the drain? Now you know. I attempt to always have a comprehensive, specific roofing detail on the structural, mechanical and plumbing sheets. I give the other disciplines my details and ask that they include them on their drawings, changing notes as required. That way, my 20-inch roof curb on the roof detail is a 20-inch curb on the mechanical sheets — not a standard 12-inch curb, which would more often than not be buried in insulation.
  4. Detail, detail, detail, and in case you glossed over this section, detail again. Make sure to include job-specific, clearly drawn details. Every condition of the roof should be detailed by the architect. Isn’t that what the client is paying for? Do not, as I once saw, indicate “RFO” on the drawings. Yes, that acronym stands for “Roofer Figure Out.” Apparently, the roofer did not figure it out. I enjoyed a nice Hawaiian vacation as a result of my work on that project, courtesy of the architect’s insurance company. How do you know that a condition works unless you design it and then draw it to scale?

    Figure 4: Insulation to curbs, roof edge and penetrations will not be tight, and to prevent a thermal short, the gaps created in construction need to filled with spray foam, as noted and shown here in this vent detail. Photos: Hutchinson Design Group

    I’ve seen roof insulation several inches above the roof edge because, OMG, the architect wanted gravel stop and forgot about camber. Not too big a deal (unless of course it’s a large building) to add several more layers of wood blocking and tapered edge strips at the now high wood blocking in the areas that were flush, but now the face of the roof edge sheet metal needs to increase. But what if the increase is above the allowable ANSI-SPRI ES1 standard and now a fascia and clip are required? You can see how the cost spirals, and the discussion ensues about who pays for what when there is a design error.

  5. Develop comprehensive specifications that indicate how the roof system components are to be installed. This requires empirical knowledge, the result of time on the roof observing construction. It is a very important educational tool that can prevent you, the designer, from looking like a fool.

Components

Best practices for single-ply membranes, in addition to the design elements above, also involve the system components. Below is a listing of items I feel embodies best practices for single-ply roof system components:

  1. Thicker membranes: The 45-mil membrane is insufficient for best practices, especially when one considers the thickness of the waterproofing over scrim on reinforced sheets. A 60-mil membrane is in my opinion the best practices minimum. Hear that? It’s the minimum. You are allowed to go to 75, 80 or 90 mils.
  2. Cover boards: A cover board should be specified in fully adhered and mechanically attached systems. (Ballasted systems should not incorporate a cover board.) Cover boards have enhanced adhesion of the membrane to the substrate over insulation facers and hold up better under wind load and hail. Cover boards also protect the insulation

    Photo 4: The greatest concern with the use of polyurethane adhesives is that the insulation board might not be not fully embedded into the adhesive. Weighting the boards at the corners and center with a minimum of 35 pounds for 10 minutes has proven to work well in achieving a solid bond.

    from physical damage and remain robust under foot traffic, while insulation tends to become crushed. Cover boards are dominated by the use of mat-faced modified gypsum products. Hydroscopic cover boards such as fiberboards are not recommended.

  3. Insulation: Now here is a product that designers seldom realize has many parts to be considered. First, let’s look at compression strength. If you are looking to best practices, 25 psi minimum is the way to go. The 18-psi insulation products with a fiber reinforced paper facer can be ruled out entirely, while 20 psi products are OK for ballasted systems. Now let’s look at facers. If you think about it for a second, when I say “paper-faced insulation,” you should first think “moisture absorbing” and secondly “mold growth.” Thus paper-faced products are not recommended to be incorporated if you are using best practices. You should be specifying the coated glass-faced products, which are resistant to moisture and mold resistant. A note to the manufacturers: get your acts together and be able to provide this product in a timely manner.

Additional considerations regarding insulation:

  • Insulation joints and gaps: You just can’t leave joints and gaps open. Show filling the open joints at the perimeter and curbs and around penetrations with spray foam in your details and specify this as well (see Photo 3 and Figure 4).
  • Mechanical attachment: Define the method of attachment and keep it simple. On typical projects, I commonly specify one mechanical fastener every 2 square feet over the entire roof (unless more fasteners are needed in the corners). Reducing the number of fasteners in the field compared to the perimeter can be confusing for contractors and the quality assurance observer, especially when the architect doesn’t define where that line is. The cost of the additional screws is nominal compared with the overall cost of the roof.
  • Polyurethane foam adhesive: Full cover spray foam or bead foam adhesive is taking over for asphalt, at least here in the Midwest, and I suspect in other local markets as well. The foam adhesive is great. It sticks to everything: cars, skylights, clerestories, your sunglasses. So, it is amazing how many insulation boards go down and don’t touch the foam. You must specify that the boards need to be set into place, walked on and then weighted in place until set. We specify five 35-pound weights (a 5-gallon pail filled with water works nicely), one at each corner and one in the middle for 10 minutes (see Photo 4). Yes, you need to be that specific.
  1. Photo 5: The design of exterior walls with metal studs that project above the roof deck is a multi-faceted, high-risk detail that is often poorly executed. Here you can see a gap between the deck and wall through which warm moist air will move and result in the premature failure of this roof. The sheathing on the wall cannot hold the horizontal base anchor screw, and the joints in the board allow air to pass to the base flashing, where is will condense. This is the type of architectural design that keeps on giving — giving me future work.

    Vapor/air barrier: A vapor air barrier can certainly serve more than a function as required for, say, over wet room conditions: pools, locker rooms, kitchens, gymnasiums. We incorporate them in both new construction and re-roofing as a means of addressing construction trade phasing and, for re-roofing, allowing time for the proper modification of existing elements such as roof edges, curbs, vents, drains, skylights and pipe curbs. Be sure to detail the penetrations and tie-ins with wall components.

  2. Deck type: Robust roof decks are best. Specify 80 ksi steel roof decks. Try staying away from joint spacing over 5 feet. Decks should be fully supported and extend completely to roof edges and curbs.
  3. Roof edge design: A key aesthetic concern, the termination point for the roof system, the first line of defense in regard to wind safety — the roof edge is all of these. The construction of the roof edge on typical commercial construction has changed drastically in the last 20 years, from brick and block to metal stud. Poorly designed metal stud parapets will be funding my grandkids’ college education. The challenge for the metal stud design is multifaceted: It must close off the chimney effect, prevent warm moist air from rising and condensing on the steel and wall substrate, create an acceptable substrate on the stud face in which to accept base anchor attachment, and — oh, yes — let’s not forget fire issues. Tread lightly here and create a “big stick” design (see Photo 5).
  4. Roof drains and curbs: As discussed above, there is a great need for coordination and specific detailing here. The rewards will be substantial in regard to quality and efficiency, minimizing time spent dealing with “what do we do now” scenarios.
  5. Slope: Design new structures with structural roof deck slope, then fine tune with tapered insulation.

Final Thoughts

Best practices will always be a balancing act between cost and quality. I believe in the mantra of “doing it right the first time.”

The industry has the material and contractors possess the skill. It’s the design and graphic communication arm that needs to improve to keep everyone working at the top of their game.

Designers, get out in the field and see the results of your details. See firsthand how a gypsum-based substrate board on a stud wall does not hold screws well; how a lap joint may not seal over the leading edge of tapered insulation; how the roof either ponds water at the roof drain or doesn’t meet code by drastically sumping; or how the hole cut in the roof membrane for the drain might be smaller than the drain bowl flange, thus restricting drainage. Seeing issues that the contractors deal with will help you as the designer in developing better details.

Contractors, when you see a detail that doesn’t work during the bidding, send in an RFI and not only ask a question, but take the time to inform the architect why you don’t think it will work. On a recent project here in Chicago, the architect omitted the vapor retarder over a pool. The contractor wrote an explicit explanation letter and RFI to the architect during bidding, and the architect replied, “install as designed.” In these situations, just walk away. For me, this is future work. A local contractor once told me, “I don’t get paid to RFI, I get paid to change order.” He also said, “If I ever received a response to an RFI, I would frame it!”

Manufacturers, too, can raise the bar. How about prohibiting loose base flashings at all times, and not allowing it when the salesman says the competition is allowing it. Have contractors on the cusp of quality? Decertify them. You don’t need the hassles. Owners don’t need the risk.

Seek out and welcome collaboration among contractors, roof systems designers, knowledgeable roof consultants, and engineers. Learning is a lifelong process, and the bar is changing every year. Too often we can be closed off and choose not to listen. At HDG, I am proud to say we have the building owners’ best interests at heart.

By all working together, the future of single-ply membranes can be enhanced and the systems will be retained when the next generation of roof cover arrives — and you know it will.

Roof Restoration Project Brings Back Luster to Quicken Loans Arena

The 170,000-square-foot roof of Quicken Loans Arena was completely restored using a liquid-applied system from Tremco Roofing. Photos: Tremco Roofing and Building Maintenance

Re-roofing sports and entertainment venues presents its own set of challenges. Sports arenas usually host concerts and other events, so scheduling and logistics can be difficult. Quicken Loans Arena in Cleveland — also known as “The Q” — is home to the Cleveland Cavaliers of the NBA, and it hosts some 200 other diverse events every year, including concerts and conventions. In 2015, realizing the roof was reaching the end of its useful life, the owners looked for advice on their next move. A team of roofing professionals recommended a roof restoration system that would provide the protection and recreate the aesthetics of the original roof — and keep disruption to the facility at a minimum.

Ohio companies stepping up to help the home team included architect Osborn Engineering, headquartered in Cleveland; roof consultant Adam Bradley Enterprises of Chagrin Falls; roofing manufacturer Tremco Roofing and Building Maintenance, headquartered in Beachwood; and roofing contractor Warren Roofing & Insulating Co., located in Walton Hills. After comprehensive testing revealed that more than 90 percent of the roof could be restored, they developed a plan to clean, repair and completely restore the 170,000-square-foot main roof of Quicken Loans Arena using a liquid-applied system from Tremco Roofing.

John Vetrovsky of Warren Roofing and Joe Slattery of Tremco Roofing shared their insights on the project with Roofing magazine. Both men were brought in during the planning stages of the project and saw it through to completion. “We were helping to budget the project with Adam Bradley and Osborn Engineering,” notes Vetrovsky. “They were asking about a few different systems, and the Tremco system was the best fit for the project.”

Warren Roofing has served the greater Cleveland and Akron area since 1922, and Tremco’s roots in northeast Ohio go back to 1928. Warren Roofing served as the general contractor and roofing contractor on the project. The scope of work included updates to the lightning protection system, the safety cable system, and the heat trace system used to melt snow in the gutters.

Repairing the Existing Roof

The existing system was the structure’s original roof. It was 24 years old, and consisted of a mechanically attached hypalon membrane over two layers of polyisocyanurate insulation totaling 3 inches. The roof membrane was showing some wear, and sections had sustained damage from an interesting source: fireworks from nearby Progressive Field, home of the Cleveland Indians, launched after the Indians hit home runs. After the damage was detected, the team changed the direction the fireworks were launched, and the problem ended.

Crews from Tremco Roofing cleaned the roof using the company’s RoofTec system, which recaptures the water and returns it to a truck to be filtered. Photos: Tremco Roofing and Building Maintenance

Despite the damage, visual analysis and a nuclear roof moisture test using a Troxler meter confirmed the roof was an excellent candidate for restoration. “There was some wet insulation and warped insulation, and we marked off those areas that had to be replaced,” notes Slattery. “It was a small fraction of the total job.”

Crews from Warren Roofing removed and replaced the damaged insulation, cutting through the membrane all the way down to the existing 6-mil vapor barrier on the deck. “All of that insulation had to be stair-stepped back so we could properly lap in the new material,” Vetrovsky says. “We got rid of all of the damaged insulation, and we repaired the vapor barrier. Then we staggered the two new layers of insulation, matching the existing thickness.”

Where possible, the existing membrane was pulled back and glued into place. In sections where new membrane was needed, crews adhered pieces of EPDM.

The plan specified adding the fasteners in the existing roof and any repaired sections before the coating system was applied. Tremco Roofing conducted uplift testing through Trinity ERD to ensure the results met or exceeded the specified design. “There was a significant upgrade to the fastening,” Vetrovsky says. “Because of the shape of the building, the perimeter enhancement was probably the greatest I’ve ever seen.”

Screws and 3-inch plates were used. In the field, the minimum was 4 feet on center, 12 inches apart. In the perimeter, fasteners were installed 2 feet on center, 8 inches apart. “It worked out nicely because the fastening ended up in the middle of the sheet, and now the sheet has fasteners that are original at the seam, and a foot or two over, there is a row of new fasteners,” notes Vetrovsky.

Cleaning Up

Prior to the fasteners being installed, the membrane was cleaned by crews from Tremco Roofing using the company’s RoofTec system. “We cleaned the membrane no more than 30 days ahead of what Warren Roofing was doing,” notes Slattery. “We had to mobilize at least three times to clean the roof so the time elapsed would never be more than 30 days.”

The three-step restoration process consists of a primer, a base coat with a fiberglass mat embedded in it, and a topcoat. Here, crews embed the fiberglass mat in the base coat. Photos: Tremco Roofing and Building Maintenance

The cleaning solution is applied using a custom-designed tool that looks like a floor polisher. It has a 2-foot diameter head that spins to clean the surface and a vacuum that recaptures the water, which is returned via hoses to a truck so contaminated waste water, environmental pollutants and high-pH cleaning solvents can be filtered out. “All of that water goes back into the sanitary system after it’s filtered,” Slattery explains. “It does not go into the sewer system.”

“It’s very fast, it’s very effective, and it’s very efficient because you can easily see the areas that have been cleaned,” notes Vetrovsky. “With power washing, you don’t have any way to filter the water.”

The biggest challenge on the cleaning portion of the project was the arena’s sheer size. Approximately 500 feet of hoses were needed to supply water and return it to the truck for filtering.

Cleaning of the substrate is a crucial step, according to Vetrovsky. “The system really does a nice job cleaning the membrane, and that is the key to any restoration project,” he says. “You’re only as good as the surface you’re applying it to.”

Applying the New Roof System

After the sections were cleaned, crews installed the liquid-applied AlphaGuard MT system. The three-step process consists of a primer, a base coat with a fiberglass mat embedded in it, and a topcoat. In this case, the primer was applied with rollers. “The area that we primed each morning was the section we would apply the first coat of AlphaGuard MT with the fiberglass mat that afternoon,” Vetrovsky says. “We did not prime ahead. We didn’t want to take the chance of dust adhering to the primer.”

The top coat was applied with both rollers and spray equipment. Photos: Tremco Roofing and Building Maintenance

Care had to be taken with the schedule to complete the work efficiently. “Once the base coat is on, you have 72 hours to apply the top coat,” Vetrovsky explains. “We would install the base coat and the fiberglass mat for two to three days to get a big enough area. The topcoat would go on faster because you’re not embedding any mesh into it. You really had to always keep an eye on the future weather to make sure you could get the topcoat on within the 72 hours.”

The topcoat was applied with both rollers and spray equipment. After the topcoat was applied, crews installed a second coat with sand embedded in it as a wear surface. Because of the roof’s curved surface, walk pads were not feasible, so the sand was used to provide additional traction for any workers conducting ongoing maintenance.

The sand was broadcast by hand and back-rolled into the coating to maintain a uniform appearance. “Part of this project was to make sure the sand looks uniform when it is visible from a blimp overhead,” notes Vetrovsky. “That was a difficult task, but the guys did a great job.”

The roof features three different finish colors, which were custom designed to match the roof’s original color scheme. The main roof is light gray, with black under the large LED sign. The sections over the wings are white, as are the 2-foot-wide stripes.

“They wanted black under the new LED sign so it would really show the letters nice and clear, even during the day,” says Vetrovsky. “We also put the white stripes back to match the roof’s original appearance. That was a challenge, to keep everything straight. It’s hard to chalk lines on a curve, but it came out nice. Everything matches what the original roof looks like.”

Penetrations for the sign included round posts that held the rails about 2-1/2 feet above the roof level. The liquid-applied membrane made coping with details easy, according to Vetrovsky. “The liquid membrane makes the flashing details all one piece with the roof system,” he says. “We removed the existing boot flashings so that we could seal directly to the conduit or steel posts.”

Gutters, Lightning Protection and Safety Systems

The large commercial gutters also needed to be refurbished. The gutters were 4 feet deep and 4 feet wide, and were outfitted with a cable snowmelt system, which had to be removed. “The gutters had a lot of damaged insulation, so material in the gutter sections was 100 percent torn off,” notes Vetrovsky.

After the roof surface was cleaned, the restoration system was applied. The three step process consists of a primer, a base coat with a fiberglass mat embedded in it, and a topcoat. Photos: Tremco Roofing and Building Maintenance

In the gutters, tapered insulation was installed, and a cover board — DensDeck from Georgia-Pacific — was added for increased durability. New EPDM membrane was installed and cleaned prior to the three-step coating application. New heat trace cable was also installed.

The lightning protection system also required repair, and close coordination with the subcontractors was critical. “The existing lightning protection had to be removed to apply the new roof system, but we couldn’t remove it 100 percent, because we still had to have an active lightning protection system for the building,” says Vetrovsky. “We rearranged the lightning system and installed new stanchions to try to eliminate as many horizontal lines as we could.”

During construction, key to the safety plan was a perimeter barrier system, which was installed by workers who were 100 percent tied off. After the system was in place, workers inside the barricades did not need to wear personal fall arrest systems. “The entire perimeter had a barricade system put on before any material was even loaded,” Vetrovsky says. The company makes its own barricade sections, which are anchored to the parapet walls and gravel stop edges and feature a downward leg for added support.

As part of the project, crews also installed permanent safety equipment. “There was an existing tie-off system out there, but it was not a certified system and we couldn’t use it,” Vetrovsky says. “We brought that to the owner’s attention and replaced it with a new certified tie-off system manufactured by Guardian Safety.”

Challenging Schedule

Progressive Field and the Quicken Loans Arena are right next to each other, and logistics and scheduling around the stadiums was difficult. Work began in 2016 and finished in 2017, and the demanding schedule was made even more difficult when both the Indians and the Cavaliers made deep runs into the playoffs. In 2016, the Cavs became NBA Champions. But it was the Indians making it to the 2016 World Series that posed bigger logistical problems for the re-roofing project.

The restored roof recreates the original color scheme, which features three different custom colors. The main roof is light gray, with black under the large LED sign, while the sections over the wings stripes are white. Photos: Tremco Roofing and Building Maintenance

“The first part of the schedule was the most difficult, as we had the get the black coating on the roof under the sign prior to the playoffs,” Vetrovsky says. The sign covered approximately 30,000 square feet of roof area, and it was difficult to access the roof surface beneath it. “Crews had to work on their hands and knees to apply the coating beneath the steel framing. That was towards the fall, when the weather started changing, and one of the biggest hurdles was just getting the roof dry in the morning. It got colder and colder as we got down to the wire, but we made our deadline for the work under the sign.”

The staging area was also limited, and the crane could only lift material to one section of the roof. Some material had to be moved by hand some 2,000 feet. “It was an awfully long walk from one end of that roof to the other,” Vetrovsky recalls.

Concerts and other events held during the construction cycle made the schedule even more challenging. “The most notable event was probably the Republican National Convention, which totally shut the site down for more than a week because of security,” notes Slattery.

Concerts usually necessitated loading in the early morning and clearing the staging area by 8 a.m., but usually work could continue during the day. “We had to do a lot of coordination to make sure we had what we needed to work the entire day and also not go against our commitment to the owner that we would not work past certain hours,” Vetrovsky says. “Many of the special events started after 7 p.m., so we would be long gone by then.”

Championship Caliber

The project was wrapped up earlier this year. Vetrovsky and Slattery agree that the system chosen was a great fit for this project for several reasons. With restoration, there is less noise, less disruption, and less equipment than with a re-roofing project, and the roof has a warranty for the next 20 years. The process also limits negative impact on the environment by preventing removal and disposal of the old roof system.

“The weight was also a factor,” notes Vetrovsky. “With the existing structure, there wasn’t a lot of room for a different type of roof system with heavy cover boards. This roof system was perfect because it doesn’t add a lot of weight.”

The coating also minimized installation time, notes Slattery. “The disruption of a roof replacement in a hospitality setting like that, where they need 250 days of revenue stream, restoration becomes a real attractive option,” he says. “I can’t think of one day where we really disrupted anything.”

Vetrovsky points to his talented crews as the key to meeting tough schedules with top-quality production “What we can offer is skilled labor,” he says. “We’re a union contractor and our guys are well trained. The harder, the better for us. We can handle projects that most other contractors won’t even put a number to — this project being one of those.”

He credits Adam Livingston, a third-generation foreman for Warren Roofing, for his work on the project.  “With his experience and attention to detail, we were able to complete this project on time, meet the expectations of the client and Tremco, and match the unique aesthetic requirements of the roof,” says Vetrovsky. “We have a lot of great employees who take pride in their work. Take all of that together, that’s why we can be successful on projects like the Quicken Loans Arena.”

The Cavaliers taking the NBA Championship during the project only added to the excitement. “It’s a great feather in our cap,” notes Slattery. “Restoration is a growing segment of the market. Instead of letting the clock run out on these roofs, if you catch them at the right time, it can be a phenomenal way to keep costs down and it’s good for the environment because it’s not adding waste to landfills.” 

TEAM

Architect: Osborn Engineering, Cleveland, Ohio, www.osborn-eng.com
Roof Consultant: Adam Bradley Enterprises, Chagrin Falls, Ohio, www.adambradleyinc.com
General Contractor: Warren Roofing & Insulating Co., Walton Hills, Ohio, www.warrenroofing.com

MATERIALS

Roof Cleaning System: RoofTec, Tremco Roofing, www.tremcoroofing.com
Roof Restoration System: AlphaGuard MT, Tremco Roofing

Restoring the Saskatchewan Legislative Dome Is a Labor of Love

The Saskatchewan Legislative Building in Regina was originally completed in 1912. The structure had undergone deterioration due to poor drainage around the dome, and a restoration project was initiated to repair the masonry and restore the copper dome. Photos: Ministry of Central Services, Government of Saskatchewan

“At the end of the day, why do we go to cities?” asks Philip Hoad. “We go to cities to look at their beautiful old buildings. We don’t generally go to look at their skyscrapers. It’s the old building that gets our minds and hearts working. When you go to a city and look at these old buildings intermingled with new buildings—that’s what gives a city life.”

Hoad is with Empire Restoration Inc., headquartered in Scarborough, Ontario, Canada. He’s been restoring historic buildings for some 30 years, and when he found out about the project to renovate the dome on the Saskatchewan Legislative Building, he knew it was a once-in-a-lifetime opportunity. “The architect put out a pre-qualification across Canada, and four firms were successful. We were one of them,” he remembers. “Then we ended up securing the tender bid. I’ll never forget it because I did the tender estimate just after a hernia operation in my dressing gown. It was really a project I won’t forget.”

The building was originally constructed in Regina, Saskatchewan, between 1908 and 1912, and it serves as the seat of government for the province and houses the legislative assembly. Designed by architects Edward and William Sutherland Maxwell of Montreal in a mix of English Renaissance and French Beaux-Arts styles, the building features ornate stone elements and unique decorative copper finishes that accent its iconic copper-clad dome. It is designated as a National Historic Site of Canada and a Provincial Heritage Property, and is subject to strict regulations regarding materials and methods of repair.

Work on the dome was carried out in a fully enclosed and heated temporary structure that allowed crews to continue throughout the winter months. Photos: Ministry of Central Services, Government of Saskatchewan

The structure has undergone some restoration work over the past 100 years, but in 2013, planning began for a conservation project designed to repair and restore the tower. The reasons for the project were twofold, according to Hoad. “First of all, the copper panels were blowing off, and somebody had re-secured them with face screws back in the ’60s or ’70s. But more importantly, the water was coming off the dome and damaging the stone below it. The dome was originally never designed with gutters, and then they later put gutters on, and these failed. So those were the two things that drove the project in the first place.”

Hoad knew the project would be challenging, but it he was confident that his company had the experience and passion to handle it. “These projects come along, for most of us, once in a lifetime,” he notes. “It’s the scale and the detail and the level of commitment that you need to restore an old building that sets us apart from, say, new construction. It’s not cookie-cutter. Everything is different, and you never know what you’re getting into—although with our experience, we’ve done so many old buildings we sort of know what we’re going to run into. All of the people who work for us love to work on these old buildings. It’s very satisfying at the end of it.”

The goals of the project were perfectly aligned with Hoad’s business philosophy. “When I start with an old building, I don’t want to change it,” he says. “It might look a little newer, but I want it to be the same as when we found it. I don’t want it to stand out as a brand-new building. We just want it to last another 100 years and to know that we’ve helped preserve it for future generations.”

The ornamental copper elements were restored and reset over the new copper panels. Photos: Ministry of Central Services, Government of Saskatchewan

Repairing the Substructure

Work on the dome was more complicated than initially thought. During the pre-construction condition survey and assessment, additional problems were discovered by the conservation architect, Spencer R. Higgins of Toronto. “Once the architect had done all his work and surveyed the building, they also realized the original woodwork was not quite up to snuff,” Hoad explains. “Basically, much of the original wood framing was made up of old pallets. It was quite remarkable. So structurally, we had to re-frame the hips, which we call the ribs. We completely removed the old pallet framing and re-framed it. We also tried to straighten the slight twist in dome, but it wasn’t easy to do since it was a poured concrete structure underneath.”

New ribs were constructed out of Douglas fir plywood using a CNC machine from 3-D architectural drawings to create templates. It was also necessary to remove and replace approximately 40 percent of deteriorated wood deck on the concrete dome, with both the interior and exterior surfaces of the concrete being repaired by the general contractor on the project, PCL Construction Management of Regina. “Re-framing the ribs was quite a challenge,” notes Hoad. “Once the concrete deck was repaired, we screwed new Douglas fir roof boards into the repaired concrete dome, added an air vapor barrier, Roxul insulation, wood nailers and an additional layer of Douglas fir roof boards, with housewrap and asphalt saturated roofing felt as the underlayment system for all the new copper roofing and cladding that would follow.”

Internally drained stainless-steel gutters were installed at the base of the dome. The gutters were lined with sheet lead. Photos: Ministry of Central Services, Government of Saskatchewan

After the masonry restoration was completed by RJW-Gem Campbell Stonemasons of Ottawa, Empire Restoration installed new gutters at the base of the dome. According to the architect’s design, heavy stainless-steel plate gutters were formed and then lined with sheet lead. Projecting stone cornice ledges were also covered in sheet lead.

Restoring the Copper Dome

The existing 16-ounce copper panels were all removed, and they were replaced with new 20-ounce panels recreated to match the original sizes and profiles. More than 20,000 square feet of copper panels were custom fabricated and installed. Great care was taken to carefully remove and restore decorative elements, including the copper garlands.

Decorative elements that could be saved were installed on new brass armatures. The dome is topped by a cupola and lantern, which were carefully restored. “The mantel on the very top, we didn’t strip that off,” Hoad notes. “We just replaced and repaired selective components, so that’s why you have a mix of old and new.”

Logistics at the job site were well coordinated. “Access was quite remarkable because PCL had erected a steel frame onto which we erected scaffolding, so the dome was right there in front of us,” Hoad notes.

Cornice sections were restored, and extensive sheet lead flashings were installed over stone cornices and ledges. Photos: Ministry of Central Services, Government of Saskatchewan

When working on the dome itself, crew members had to be tied off with personal fall arrest systems, as it was possible to slip through gaps between the scaffold decks and the dome roof surface. Weather was not an issue, as the steel frame structure was totally enclosed with a heavy-duty insulated tarp system. “We had our own ventilation system, we had a heating system, we had electricity up there, we had pneumatic power—we basically had everything up there. PCL had it well set up for the various trades. There was a large crane on site to hoist all our materials up.”

Hoad cites the sheer size of the project as one of his greatest concerns. “The biggest challenge was just the scale of the project, being able to produce the amount of work necessary and get the job done in the prescribed time,” he says. “It was a lot of the same thing, albeit with some very complicated detailing. We had multiple skill sets on the site dealing with multiple materials and details.”

The project has won numerous awards, including a 2017 North American Copper in Architecture Award from the Copper Development Association. Hoad is proud of his company’s role in the project but relieved it is completed. “During it, I was at times tearing my hair out,” he recalls. “It was a very high-pressure project that lasted a long time. It was three or four days a week of constant men, materials, equipment, meetings, details, changes, extras, credits. From start to finish, it was two years of my life.”

The cupola and lantern at the top of the dome were repaired in situ. Photos: Ministry of Central Services, Government of Saskatchewan

Despite the pressure, Hoad found the work extremely satisfying. “What we are doing is permanent and built to last for future generations,” he says. “We’re using natural, traditional building materials of stone, wood, copper and other noble metals. That’s what drives me to love the industry and my job—because it’s permanent, sustainable and it’s for future generations.”

After all, it’s often the roof and flashings that play one of the most critical roles in fighting the elements of weather, notes Hoad. “Roofing and sheet metal deficiencies is where much of building damage and deterioration starts,” he says. “You can repair a masonry wall, but if you don’t stop it getting saturated, it’ll just deteriorate again in another few years. Regina was a good example of that. We’ve now provided great protection to these beautiful stone elements, allowing them to last another 100 years.”

TEAM

Conservation Architect: Spencer R. Higgins, Architect Incorporated, Toronto, Ontario, Higginsarchitect.com
General Contractor: PCL Construction Management, Regina, Saskatchewan, PCL.com
Sheet Metal Contractor: Empire Restoration Inc., Scarborough, Ontario, EmpireRestoration.com
Masonry Contractor: RJW-Gem Campbell Stonemasons Inc., Ottawa, Ontario, RJWgem.com

MATERIALS

Copper: 20-ounce copper sheet metal
Wood Framing: Douglas fir
Insulation: Rockwool Rigid Insulation, Roxul, Roxul.com

Understanding and Installing Insulated Metal Panels

IMP installation

IMP installation typically occurs once the steel frame is in place. The more common vertical installation allows for faster close-in for interior trade work. Photos: Metl-Span

Insulated metal panels, or IMPs, incorporate a composite design with foam insulation sandwiched between a metal face and liner. IMPs form an all-in-one-system, with a single component serving as the exterior rainscreen, air and moisture barrier, and thermal insulation. Panels can be installed vertically or horizontally, are ideal for all climates, and can be coated with a number of high-performance coating systems that offer minimal maintenance and dynamic aesthetic options.

The Benefits of IMPs

At the crux of the IMP system is thermal performance in the form of polyurethane insulation. Panel thicknesses generally range from 2 to 6 inches, with the widest panels often reserved for cold storage or food processing applications. IMPs provide roughly three times the insulation value of field-assembled glass fiber systems, and panel thickness and coating options can be tailored to meet most R-value requirements.

IMPs offer a sealed interior panel face to create a continuous weather barrier, and the materials used are not conducive to water retention. Metal—typically galvanized steel, stainless steel or aluminum—coupled with closed-cell insulation creates an envelope solution impervious to vapor diffusion. Closed-cell insulation has a much denser and more compact structure than most other insulation materials creating an advantage in air and vapor barrier designs.

Time, budget and design can all be looming expectations for any building project. A valuable characteristic of IMPs is their ability to keep you on time and on budget while providing design flexibility to meet even the toughest building codes. The unique single-source composition of insulated metal panels allows for a single team to accomplish quick and complete enclosure of the building so interior trades can begin. This expedites the timeline and streamlines the budget by eliminating the need for additional teams to complete the exterior envelope and insulation.

Minimizing Moisture

The seams function both as barrier and pressure-equalized joint, providing long-term protection that requires minimal maintenance. Multiple component systems often rely on the accurate and consistent placement of sealant and may also require periodic maintenance. In addition, with IMPS a vented horizontal joint is designed for pressure equalization, and, even in the presence of an imperfect air barrier, the pressure-equalized joinery maintains the system’s performance integrity. With multi component systems, imperfections can lead to moisture infiltration.

The real damage occurs when water enters through a wall and into a building becoming entrapped—which leads to corrosion, mold, rot, or delaminating. Unlike IMPs, some multi-component wall systems include a variety of different assembly materials that may hold water, like glass fiber or paper-faced gypsum. When those materials get wet, they can retain water, which can result in mold and degradation.

Installation

Typically, IMP installation is handled by crews of 2-4 people. Very little equipment is needed other than standard construction tools including hand drills, band and circular saws, sealant guns, and other materials. The panels can be installed via the ground or from a lift, and materials can be staged on interior floors or on the ground level. Panel installation typically occurs once the steel frame is in place and prior to interior fit out. The more common vertical installation allows for faster close-in for interior trade work.

Metl-Span CFR insulated metal standing seam roof panels

Metl-Span CFR insulated metal standing seam roof panels combine durable interior and exterior faces with exceptional thermal performance. Photos: Metl-Span

IMPs are often installed using concealed clips and fasteners that are attached to the structural supports (16 gauge minimum wall thickness tubes or stud framing). The panels are typically installed bottom to top and left to right, directly over the steel framing. No exterior gypsum or weather barriers are required, as these panels act as the building’s weather barriers.

The product’s high strength-to-weight ratio allows for longer installation spans and reduced structural costs. The metal skins act as the flange of a beam, resisting bending stress, while the foam core acts as the web of the beam, resisting shear stress. This important aspect also contributes to a long product life cycle.

Design Flexibility

IMPs offer a unique combination of aesthetic design options, including mitered panel edges, and a vast array of profiles, textures and reveal configurations. Flat wall profiles are ideally suited for designers seeking a monolithic architectural façade without sacrificing performance elements. The beautiful, flush panels have become a mainstay in projects in a number of high-end architectural markets.

The 35,000-square-foot AgroChem manufacturing facility in Saratoga Springs, N.Y.

The 35,000-square-foot AgroChem manufacturing facility in Saratoga Springs, N.Y., showcases vertically installed Metl-Span CF36 insulated metal panels. Photos: Metl-Span

Striated or ribbed wall profiles are more common in commercial and industrial applications. The products offer bold vertical lines for a distinctive blend of modern and utilitarian design, while continuing flawless symmetry from facade to facade, or room to room on exposed interior faces. Ribbed panels also work in tandem with natural lighting to create impactful designs. Different textures, such as embossed or simulated stucco finish, add dimensional nuance and contrast to projects of all shapes and sizes.

IMPs are offered in an unlimited palette of standard and custom colors to meet any aesthetic requirement, as well as energy-efficient solar reflectivity standards. Panels are typically painted with a polyvinylidene fluoride (PVDF) coating with optional pearlescent and metallic effects, and can even simulate expensive wood grains and natural metals. PVDF finishes offer exceptional performance characteristics that can be tailored to meet most any project needs, including saltwater environments and extreme weather conditions.

Roof Configurations

For all the above reasons, IMPs have also become a popular building product for roofing applications. Insulated metal standing seam roof panels provide the desired aesthetic of traditional single-skin metal standing seem roofs with added thermal performance. Standing seam roof panels feature a raised lip at the panel joinery, which not only enhances overall weather resistance but provides the desired clean, sleek sightlines.

IMP installation

IMP installation typically occurs once the steel frame is in place. The more common vertical installation allows for faster close-in for interior trade work Photos: Metl-Span

The systems typically feature field-seamed, concealed fasteners that are not exposed to the elements. Just like their wall panel counterparts, insulated metal standing seam roof panels are available in a variety of thicknesses and exterior finishes.

Another popular insulated metal roof application showcases overlapping profile panels. The product’s overlapping, through-fastened joinery allows for quick installation in roof applications, resulting in reduced labor costs and faster close-in.

Finally, insulated metal roof deck panel systems combine the standard steel deck, insulation, and substrate necessary for single-ply membranes or non-structural standing seam roof coverings. The multi-faceted advantages of this system include longer spans between supports, superior deflection resistance, and a working platform during installation.

Insulated metal wall and roof panels offer an exceptional level of value when compared to traditional multi-component wall systems. The product’s unique single-component construction combines outstanding performance with simple and quick installation, a diverse array of aesthetic options, and the quality assurance of a single provider.

RIMA International Calls for Topics for Reflective Insulation Manufacturers Conference

The 2018 International Reflective Insulation Manufacturers (I-RIM) Conference will take place Spring 2018 in Puntarenas, Costa Rica.  The event will be held May 9-10, at the Marriott Los Suenos Resort right on the Costa Rica coast.  This international event is an opportunity for those in the reflective products industries to learn about the latest research, advancements, new technology and uses of reflective products as well as exchange information on how reflectives are being used in various regions of the world.  
 
At this time, the conference host, RIMA International, is inviting you to submit any papers or educational session you would like to present at this conference.  Suggested topics for papers include, but are not limited to, recent studies/simulations; new technologies; advancements/uses; research/studies; economic and government challenges/successes; regional uses and updates and building codes and related issues around the world. 
 
The program slots will fill up quickly, so forward your submissions promptly.  Send your outline and topic to RIMA International via e-mail at rima@rima.net and mark your calendars for May 9-10, 2018, in Costa Rica.  

TPO System Delivers Energy Efficiency for Company Headquarters

TurnKey Corrections constructed a new 115,000-square-foot in facility in River Falls, Wis.

TurnKey Corrections constructed a new 115,000-square-foot in facility in River Falls, Wis.

If you want it done right, do it yourself. Company owners Todd Westby and Tim Westby take a hands-on approach to running TurnKey Corrections, the River Falls, Wisconsin-based company that provides commissary and jail management services to county corrections facilities nationwide. The Westby brothers also take pride in the fact that TurnKey manufactures the kiosks it provides to its clients and develops and owns the proprietary software used to run them.

So, it’s perhaps not surprising that, when building the company’s new headquarters, Todd Westby, the company’s CEO, founder and general manager, served as the general contractor. Or that he had definite ideas regarding the roofing system that would be installed. Or that he was more than willing to get his hands dirty during the installation process.

Founded in 1998, TurnKey Corrections helps corrections facilities streamline and lower the cost of delivering a variety services to inmates, including commissary, email and email-to-text communication, video visitation, law library access, and paperless intra-facility communication and documentation. Following several years of robust growth, the company had outgrown its three existing buildings. So, it constructed a new 115,000-square-foot facility to bring all operations, including 50,000 square feet of office space and a 65,000 square-foot warehouse where commissary items are stored prior to shipment to corrections facilities, under a single roof and accommodate future success.

“We wanted to be involved in the project from beginning to end so we knew what we were getting and how it was built,” Todd Westby says of the decision to keep construction management in-house. “We wanted to know about anything and everything that was being built for the company in this building.”

In planning the project, Westby initially set two key criteria for the roofing system: that the building would be made watertight as quickly as possible so concrete slab pours and other interior work could be completed, and that the roof would be covered by a warranty of at least 20 years. The design-build firm’s initial plans called for a ballasted EPDM roofing system, but Rex Greenwald, president of roofing contractor TEREX Roofing & Sheet Metal LLC of Minneapolis, suggested a white TPO system, noting that it would meet the quick installation and warranty goals while also enhancing the building’s energy efficiency. Westby was intrigued and, after some research, agreed to the recommendation. In addition to helping reduce cooling costs during summer months, the reflective surface would allow a blanket of snow to remain on the roof during winter months to provide additional insulation.

The TPO roofing system was constructed over a 22-gauge metal fabricated roof deck.

The TPO roofing system was constructed over a 22-gauge metal fabricated roof deck.

The Roof System

The TPO roofing system included a 22-gauge metal fabricated roof deck; two 2.5-inch-thick layers of Poly ISO insulation from Mule-Hide Products Co., with tapered insulation saddles and crickets to aid drainage; and 811 squares of 60-mil white TPO membrane from Mule-Hide Products Co. The insulation and membrane were mechanically attached using the RhinoBond System from OMG Roofing Products. Cast iron roof drains, designed and installed by a plumber, were used rather than scuppers and downspouts—a practice that the TEREX team strongly recommends to prevent freezing during the cold Upper Midwest winters. Walkways lead to the mechanical units, protecting the membrane from damage when maintenance personnel need to access the equipment.

The TEREX team finds the RhinoBond System to be the most efficient and economical attachment method for TPO systems. Specially coated metal plates are used to fasten the insulation to the roof deck and then an electromagnetic welder is used to attach the membrane to the plates. The membrane is not penetrated, eliminating a potential entry point for moisture. And while other mechanical attachment methods require the crew to seam as they go, the RhinoBond System allows them to lay the entire membrane (a task which must be completed in good weather conditions) at once and go back later to induction weld the seams and plates, which can be done when Mother Nature is slightly less cooperative.

Greenwald estimates that the switch from the originally specified ballasted EPDM system to the TPO roofing system and RhinoBond System shaved at least 10 percent off the installation time and reduced the roof weight by 10 pounds per square foot.

Having Westby on-site as the general contractor also sped up the project considerably, Greenwald notes. “He was a huge asset to all of the subcontractors,” he explains. “We could get construction questions answered quickly and could talk through issues and procedures on a timely basis.”

And the most memorable moment in the project for Greenwald was seeing Westby working side-by-side with his crew. “One day we had a delivery truck show up, and Todd jumped on the forklift and helped us unload the truck.”

As sought from the project’s outset, the roofing system is backed by a 20-year, no-dollar-limit labor and material warranty.

With one winter of use in the rearview mirror, the roofing system has exceeded Westby’s expectations. Warehouse space was doubled, but heating costs have been cut in half. The 10-unit heating system also is able to keep the warehouse a uniform temperature, without the cold spots that were common in the old building.

“It really is a beautiful, very efficient and organized-looking roof,” Greenwald says.

Insulation Alternative Receives Patent

Rich-E-Board provides an insulation alternative for the commercial roofing market.

Rich-E-Board provides an insulation alternative for the commercial roofing market.

Rich-E-Board is an insulated composite panel system created by R-50 Systems to provide an insulation alternative for the commercial roofing market. While conventional insulation requires a thickness of 15 inches to reach an R-value of 50, Rich-E-Board achieves the same result at just 1 1/2-inches thick. Rich-E-Board can be installed on most roof deck types and can support all conventional low-slope roof systems. The product recently received a patent for its proprietary Vacuum Insulated Panel—two polymeric foam cover boards that sandwich the panel—and the adhesive ribbons that bind the boards and panel together. Rich-E-Board is cut-to-spec and lightweight, as well as mold and fire resistant.