New Roof Systems Top University of Minnesota’s Renovated Pioneer Hall

Pioneer Hall was renovated by the University of Minnesota in 2019 at cost of $104 million. Photo: Central Roofing Company

Pioneer Hall is a central fixture on the University of Minnesota campus. Built in 1934, the five-story structure serves as a freshman dormitory and dining hall. The building was almost totally rebuilt as part of a $104 million renovation project in 2019.

A key goal of the project was to keep the distinctive, highly visible brick facades on the four outer wings in place while totally replacing the main section of the building. Work included entirely renovating the interior, replacing all mechanical systems, and installing a new roof.

Working along with McGough Construction, the St. Paul-based general contractor on the project, Minneapolis-based Central Roofing Company installed the new roof systems on the building, which included 47,000 square feet of synthetic slate, as well as built-up roofs, EPDM roofs, and a garden roof.

Central Roofing has been in business since 1929, and the company is a fixture on the University of Minnesota campus. “We do a wide variety of different types of commercial roofs, ranging anywhere from flat to steep to sheet metal roofs,” says Michael Mehring, vice president of commercial sales for Central Roofing. “We also have a metal panel division. There is no system that we cannot do in regard to flat roofs. On steep roofs, we do both tile and shingle as well as sheet metal. In addition to that, we have one of the largest service divisions in the Midwest.”

The building’s 93 dormers posed some detail challenges. The dormer roofs were topped with synthetic slate, and the sides were clad with it as well. Photos: DaVinci Roofscapes

The project involved multiple scopes of work, including the DaVinci Roofscapes synthetic slate on the steep-slope sections, Johns Manville built-up roofs on the main roof and green roof area, as well as sheet metal work, gutters and downspouts. Central Roofing developed a detailed plan to bid on all the scopes of work — and execute everything.

“The project was interesting in the sense that approximately 75 percent of the building was demolition,” notes Mehring. “That included all of the internal parts of the building. The four bays around the perimeter were saved because of historical ramifications. The university wanted to try and keep those four bays because of the distinctive windows and the brick. The middle portion of the structure was pretty much demoed out. So much internal work was needed on the mechanical and electrical systems that they couldn’t save it.”

Synthetic Slate Roof

Central Roofing worked closely with McGough Construction and the project architect, St. Paul-based TDKA Architects, to ensure the new synthetic slate roof system would closely replicate the structure’s original slate roof. According to Henri Germain, project manager/estimator with Central Roofing, the DaVinci Multi-Width Slate product was approved for the project because it so authentically duplicates real slate.

DaVinci Multi-Width Slate in a custom color blend was chosen for the steep-slope sections of the roof.

“We started by making presentations of product options to the project architect,” says Germain. “The architect moved forward with the DaVinci product because of the aesthetics, value, and long-term benefits to the university.”

Selection of a roofing color was also a critical factor. DaVinci created a custom color blend of dark purple, medium brown, dark stone, medium green and dark green for Pioneer Hall. “The capability of DaVinci to develop the custom color blend was amazing,” says Germain. “The roofing colors really complement the dormitory plus other structures on campus.”

Installation Begins

Work began on the steep slope sections with the installation of the synthetic slate system on the brand-new metal deck. “From a scheduling standpoint, the first thing that we did was the tile areas,” Mehring recalls. “In order to maintain the milestones that McGough had, we had to essentially get them watertight within 60 days. To do that, we did the tile work in phases utilizing 15-20 workers every day.”

The men were split into three crews. A crew of six to seven roofers began installing the substrate board and Grace Ice & Water Shield, which served as the vapor barrier. The second crew came in behind the first to install the wood blocking and insulation, which was capped with plywood and covered with Grace Ice & Water Shield and GAF FeltBuster synthetic underlayment.

Crews from Central Roofing Company installed RG 16 Snow Guards from Rocky Mountain Snow Guards.

A third crew of four or five technicians then installed the DaVinci synthetic slate tiles. The product was easy to install, notes Germain, but the numerous details — including some 93 dormers — posed some challenges. Crews also installed RG 16 Snow Guards from Rocky Mountain Snow Guards Inc.

“There were many details, and because of the extreme difficulty in accessing the area after the scaffolding was removed, everything was treated as if it would never be returned to in the lifetime of the roof — not for caulking, not for anything,” Germain says. “The thought was to make sure it was done once and done right.”

As the tile work progressed, the sheet metal crew started installing the gutters. The waterproofing, gutter installation and tile application had to be coordinated carefully to make sure everything was tied in perfectly. “It was a sequencing nightmare,” says Mehring.

Central Roofing crews installed the wood blocking, sheathing and waterproofing in the decorative cornices, which had been recreated out of fiber reinforced plastic (FRP) by another subcontractor. Central Roofing then fabricated and installed the copper internal gutters, as well as the downspouts, which were constructed of pre-finished steel to match the window frames.

On the smaller flat roof areas abutting the steep-slope roof, a 60-mil EPDM system from Johns Manville was installed. These areas were completed as work progressed on each section.

Built-Up Roofs

On the low-slope sections of the main roof, crews applied a four-ply built-up roof system manufactured by Johns Manville. Approximately 31,500 square feet of JM’s 4GIG system was installed and topped with a gravel surface.

Central Roofing’s sheet metal crew installed custom fabricated gutters. The waterproofing, gutter installation and tile application had to be carefully coordinated.

The built-up roof areas were bordered by parapet walls, which were east to tie into, notes Mehring. “What made this project a tad bit easier is that the other scopes of the work — the flat roofs — didn’t have too many sequencing issues with the tile work and the gutters,” he says. “The built-up roofers were on their own and had their own schedule.”

On the 13,000-square-foot area for the green roof, a Johns Manville three-ply system with a modified cap sheet was installed. The green roof features a built-in leak detection system from International Leak Detection (ILD). “The leak detection system is encapsulated between the polyiso and the cover board,” notes Mehring. “We installed a JM modified cap sheet. All of the seams had to be reinforced with their PermaFlash liquid membrane to maintain the warranty because of the green roof.”

Installation Hurdles

Challenges on the project included a tight schedule and difficult weather. “Essentially we had a 40-day schedule to get all of the built-up roofing on,” Mehring says. “The challenge with not only the built-up but the tile as well is that the work started in the late fall and we had to work through the winter. You can imagine the problems with the Minnesota weather.”

Days were lost to rain, snow, cold temperatures and high winds. The green roof system couldn’t be completed until May, near the end of the project, when Central Roofing installed the growing medium and plants. After a drainage layer was installed over the cap sheet, crews applied engineered soils and sedum mats supplied by Hanging Gardens, Milwaukee, Wisconsin.

Access at the site was also difficult. Central Roofing used its Potain cranes to get materials on and off the roof. “Those self-erecting stick cranes can go 120 feet up in the air and they also have the ability to deliver materials 150 feet from the setup location,” Mehring explains. “That was critical because we only had two locations we could set up: on the south side, in between the opening of the two wings, and on the north side, also in the opening between the wings. We had to have the ability to get material to the middle section and the corners of all four wings, and that was the only way to do it.”

Another logistical challenge was posed by a large tree at the southeast corner of the building — the oldest tree on campus. Great care had to be taken to avoid damaging it. “The tree goes as high as the steep roof, and you had to work right by it,” notes Germain. “While working and using the crane, we couldn’t touch it. The guys were very careful and very conscious of it. Adam Fritchie, the foreman on the project, did a great job communicating with the university and the crews to make sure everyone understood the project goals.”

Safety Plan

As part of the site-specific safety plan, crew members were tied off 100 percent of the time on the steep-slope sections — even with scaffolding in place for the project. The flat roof areas were bordered by parapets, but they were only 2 feet high, so safety railing systems were installed. “We used Raptor Rails all the way around, and when we were installing the railings, we used Raptor carts,” Mehring says. “Our men were fully tied off while installing the railings — and taking them down.”

It was a complicated project, but executing complicated projects with multiple scopes of work is one of the company’s strengths. “Overall, I think we had more than 20,000 hours on this project,” Mehring says. “So, I think that a roofer having the ability to garner 20,000 hours on a project speaks for our ability to finish large and challenging projects within the milestones required — as well as keeping safe protocols and paying the bills. The tile, the copper, the sheet metal, the built-up roofing, the green roofing, the EPDM — all of those were self-performed by our guys.”

“This was such a special project,” Germain says. “Aside from the sheer size, it captures the heart. When we look at the finished structure we’re extremely proud. Our team, which also included Lloyd Carr, Matt Teuffel and Corey Degris, played a big part in re-establishing Pioneer Hall as a key building on the University of Minnesota campus.”

TEAM

Architect: TDKA Architects, St. Paul, Minnesota, www.tkda.com

General Contractor: McGough Construction, St. Paul, Minnesota, www.mcgough.com

Roofing Contractor: Central Roofing Company, Minneapolis, Minnesota, https://www.centralroofing.com

MATERIALS

Synthetic Slate: DaVinci Multi-Width Slate, DaVinci Roofscapes, www.davinciroofscapes.com

Built-Up Roofs: Four-ply 4GIG system and, Johns Manville, www.JM.com

EPDM Roof: 60-mil EPDM, Johns Manville

Vapor Barrier: Grace Ice & Water Shield, GCP Allied Technologies, www.gcpat.com

Underlayment: FeltBuster synthetic underlayment, GAF, www.GAF.com

Leak Detection System: International Leak Detection, https://leak-detection.com

Snow Guards: Rocky Mountain RG 16 Snow Guards, Rocky Mountain Snow Guards Inc., www.rockymountainsnowguards.com

Green Roof: Sedum mats, Hanging Gardens, Milwaukee, Wisconsin, www.hanging-gardens.com

Planning Ahead Sets Up Warehouse Re-Roofing Project for Success

Citizens Service Center is the primary document storage facility for El Paso County, Colorado. When the roof had to be replaced, protecting the interior of the facility was critical. Photos: Exterior Solutions Group

The most crucial decisions on a project are often made before work even begins. According to Ken Flickinger Jr., president of Exterior Solutions Group, that was the case with the recent Citizens Service Center re-roofing project in Colorado Springs. Owned and managed by El Paso County, the building is the primary document storage facility for the county. The building’s historic documents — some dating back to the 1800s — were under threat of damage due to an active roof leak. The existing roof also had extensive hail damage, so the roof replacement project was put out for bid.

With offices in Colorado, Iowa and Oklahoma, Exterior Solutions Group does all types of roofing work, but its focus is primarily on commercial roofing, both re-roofing and new construction. Flickinger, who heads up the location in Parker, Colorado, was definitely intrigued by the project.

The scope of work involved removing old HVAC equipment on the roof, which would be done by a separate party in coordination with the roofing contractor. The HVAC equipment was obsolete; it had been replaced and relocated a few years earlier. “It was an interesting project because there was equipment everywhere on this roof,” he says. “It looked like an automotive manufacturing plant. For us, we like those types of projects. We like ones that are a bit out of the ordinary and require a little bit higher level of project management. So, that’s what drew us to bidding the job.”

Tim Hicks, the salesperson at Exterior Solutions who sold the job, explains that the original spec called for white EPDM, with TPO as an accepted alternate. “Oddly enough, they didn’t require you to do the base bid to bid the alternate,” he notes. “We chose to just bid the TPO. We ended up being the low bidder on that, and that’s how we got the project.”

After obsolete HVAC equipment was removed, crews from Exterior Solutions Group installed a TPO system from Johns Manville.

The logistics of the removal and roof replacement would be complicated, and it became obvious that access to the roof would also be an issue, as it was a high-security building. “This is a multi-story building, and the amount of security we would have to go through to enter the building and get up to the roof hatch would’ve created all kinds of problems,” Hicks explains. “So, we suggested putting a stair tower up and giving us complete access from the outside. We’d never have to enter the building. They had never even considered that option, but as we walked them through it and said, ‘This is how we’d like to set the job up,’ they replied, ‘We love it.’”

The next step involved coordinating equipment removal with the HVAC contractor. Again, a suggestion from Exterior Solutions helped increase efficiency and cut costs. The HVAC contractor’s original plan called for roofing crews to take out the roof system around the HVAC units, allowing HVAC crews to cut out sections of the steel decking below the equipment. The deck sections would have to be replaced before temporary roofs could be installed to keep the building watertight. The team at Exterior Solutions pointed out that there was no need to remove the decking. Instead, the equipment supports could be cut off as close to the deck as possible, and the ends of the supports could be buried in the insulation of the new roof system.

Equipment Removal

In the end, that’s the plan they executed. A fire watch was set up inside the building as equipment was removed. Crews from Exterior Solutions removed the existing roof to give the HVAC crews access. “We basically created a hole in the roof for them so they could see what they were doing,” Hicks explains. “We would slice the existing TPO back and take out the insulation. They would put down welding blankets in the area and then use cutting torches to cut the I-beam and L-beam steel supports off. Our roofers were on site to make sure supports were cut down to the proper length. As soon as the supports were cut off, we basically filled the hole.”

The deck was left intact, making it much faster and easier to patch the existing roof. It was critical to ensure the roof was weathertight every night to protect the documents inside the building. “We put the insulation back, we replaced the membrane, and we used an Eternabond product or welded a small cover strip around it, depending on the size of the hole,” notes Hicks.

The HVAC equipment was taken off the roof with a crane. Once the equipment was removed from one side of the roof, crews began installing the new system.

Roof Installation

With the equipment gone, the rest was clear sailing. “In all honesty, the roof was easy,” Flickinger says.

The existing roof system was torn off down to the deck and a TPO system from Johns Manville was installed. New polyiso insulation was topped with a fully tapered system to ensure proper drainage. After DensDeck cover board was installed, the 60-mil TPO membrane was adhered into place.

“We worked from one side to the other,” Hicks says. “The high point of the roof with the tapered system was in the center, and water is pushed to both sides where there are internal drains and overflow scuppers. We started at the low point and roofed up the hill to the center on one side, and then turned around and did the exact same thing on the other side.”

Details were minimal — just a few penetrations and a curb around the roof hatch. The edge metal installed was the Anchor-Tite system manufactured by Metal-Era. “We offered an upgrade on the metal edge,” notes Hicks. “Instead of a shop-fabricated metal edge, we recommended Anchor-Tite all the way around. After all, the area is subject to high winds. We felt that was a better way to go.”

The TPO system installed was ideal for the project, according to Flickinger. “I’ve been a thermoplastic guy my entire career,” he says. “I’m a big believer in heat-welded seams. We thought the heat-welded seams and adhered walls offered a better approach. We think it’s a very good-looking roof, and with the addition of a cover board — which the original roof didn’t have — it would definitely improve its hail performance.”

Hicks credits the manufacturer for assistance on the project. “Manville was very supportive,” he says. “They were local, and their technical support is excellent. We thought that for a project like this, to have a partner who was right there with you was important.”

The project was completed in less than a month, and Flickinger believes the key to executing the job efficiently was the decision to set up the stair tower. “That was the suggestion of our project manager,” says Flickinger. “Our company likes using stair towers, especially when we’re talking about long ladder runs. For us, it’s partly about safety for our own people, but because the building was secured, and as they talked to us about the steps we would have to take on a daily basis to just get access to the roof, we realized it was just going to kill us on production. We were going to waste so may man-hours on a weekly basis just getting to and from the roof. That was one of the driving factors that got the owner to agree to the stair tower, and we got a change order for it.”

The cost of the change order was minimal compared to the time and money it saved. “We have some really bright people,” says Flickinger. “They are all really good at looking at something and seeing if there is a better way. One of our strengths is we are really good at creative solutions, whether it’s something as simple as avoiding the grief of going through a secured building or taking a step back and asking, ‘Why cut holes in the deck? Why can’t we just cut these supports off above the deck because we are burying them in 6 inches of insulation anyway?’”

“The other piece for us is that we focus on the safety side of it, not only for our own people, but also the site safety and the safety of the people inside the building,” Flickinger continues. “We are very aware of that as we set our jobs up and decide where to set our materials and those types of things.”

The last component of a successful project is top-quality workmanship. “We focus on doing it right the first time,” Flickinger says. “Getting that customer satisfaction, not only at the end of the job with a great roof, but also during the project by trying to minimize the pain that an owner typically goes through in a roofing project, that’s one of our strengths that this project demonstrates.”

TEAM

Roofing Contractor: Exterior Solutions Group, Parker, Colorado, www.exteriorsolutionsgroup.com

MATERIALS

Roof Membrane: 60-mil TPO, Johns Manville, www.jm.com

Cover Board: DensDeck Prime, Georgia-Pacific, www.buildgp.com

Edge Metal: Anchor-Tite, Metal-Era, www.metalera.com

Environmental Product Declarations Are a Driving Force for Change

Agropur Cooperative’s new Canada Green Building Council certified and LEED accredited two-story office building in Longueuil, Quebec, has polyiso insulation on the roof. Photo: SOPREMA

With a worldwide population that continues to grow (estimated at more than nine billion by 2050), demand for natural resources is increasing at rates that threaten to stress sustainable supply. Over the last few decades, society has become increasingly concerned about the environmental impacts of human activity. The U.S. Department of Energy estimates that the built environment accounts for 41 percent of our national energy consumption and nearly as much of our greenhouse gas emissions. With an eye toward conserving resources and mitigating climate change and its effects, the building industry is on the front lines of the effort to achieve sustainability goals and create buildings that not only drop jaws, but also lower carbon footprints.

Polyiso roof and wall insulation offers high unit R-value per inch, zero ozone depletion potential, and outstanding fire performance. In this photo, polyiso roof insulation is being installed on a flat roof. Photo: Hunter Panels

Sustainability is not a one-time event, but a process that encompasses the whole life cycle of a building. To effectively ensure that resource conservation spans that whole cycle requires transparency and coordination between stakeholders starting at the beginning of the design process to assess choices based on economy, durability, utility, and sustainability. Architects and specifiers need to have a complete picture of the merits of any product that might go into a building so they can make informed decisions that include impacts from a product’s manufacturing process to its long-term applied performance.

In the United States, the Leadership in Energy and Environmental Design (LEED) standards developed by the U.S. Green Building Council have emerged as an important benchmark for rating individual building components, processes, and systems. They are designed to:

  • Promote the efficient use of energy, water, and other resources.
  • Protect occupant health and improve productivity.
  • Reduce waste, pollution, and environmental degradation.
  • Improve resiliency in the face of extreme conditions.
The new Big Ten Headquarters in Rosemont, Illinois, utilizes polyiso wall insulation. Photo: Hunter Panels

Other notable programs across the globe and throughout North America, including the Building Research Establishment Environmental Assessment Method (BREEAM), Green Globes, US Department of Energy’s Energy Star program, GreenStar, and the Living Building Challenge, employ standards that are used in concert with LEED ratings to boost performance and promote a conscious approach to resource use in building construction, operation, and maintenance.

Many manufacturers are publishing rigorous, third-party verified evaluations of the whole life cycle impacts of their products to increase transparency and allow easier comparison of alternatives. These Environmental Product Declarations (EPDs) are similar to a “nutrition label” for building products and include information on sourcing, production, and performance of the products in a standardized and independently verified format that is recognized globally and based on International Organization for Standardization (ISO) standards. This consistent and scientific method to measuring and reporting information makes it possible to consider a product’s comprehensive impact and allows to base specification choices on measurable projections.

Earlier versions of LEED allowed manufactures to make claims about a product’s sustainability in one area without disclosing deficits in another area. This led to a healthy skepticism from clients and consumers about advertised merits and prompted a move toward greater transparency and verifiability. In its most recent revision, the LEED v4 standard asks manufacturers to provide more detailed information on a material’s content and its comprehensive environmental impact before their individual products can claim sustainability designations.

Basis for Evaluation

For an EPD to have a scientific basis, the impacts need to be clearly defined and linked to important environmental concerns. To help define these impacts the U.S. Environmental Protection Agency (EPA) developed TRACI, the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. TRACI methodology identifies a number of important factors related to critical environmental impacts:

  • Global Warming Potential (GWP)—linked to global climate change.
  • Ozone Depletion Potential (ODP)—related to the (now closing) hole in the earth’s ozone layer caused by certain chemicals.
  • Smog Creation Potential—linked to car exhausts, power plant emissions and fumes from products that contain volatile organic compounds (VOCs).
  • Acidification Potential—linked to acid rain caused by certain smokestack emissions.
  • Eutrophication Potential—linked to excessive amounts of nitrogen in rivers and lakes causing algae blooms that consume vital oxygen in the water.

Common Standards for Comparison

The EPD process is based on a framework to ensure that these practices are conducted in a consistent and reliable manner anywhere in the world. It includes the following key steps:

  • Product Category Rule – products with similar functions are assessed in the same way using comparable measures.
  • Life Cycle Assessment – products are evaluated based on inputs in the form of resources and energy, and outputs in the form of emissions and waste for their life cycle either from “cradle-to-gate” (from raw material extraction until it reaches the “gate” of the manufacturing facility) or the more rigorous “cradle-to-grave” (goes beyond the gate to include transportation, product manufacturing, use phase and the product’s end of life).
  • EPD generation – information from this assessment is organized into the standardized format for publication, including a life cycle diagram, illustration of product components, and a summary of impacts.
  • Third-party validation – outside experts verify and evaluate the report and the research that underlies it.

The widespread adoption of EPDs is fostering change in the building products industry leading to even more ambitious sustainability goals. As a growing body of EPDs are published, they contribute to a reliable catalog of data available as a reference point to help identify markets for new products and potential areas for improvement. Manufacturers can easily evaluate which steps in their products sourcing and production could be optimized for sustainability. Comparative information can serve as motivation for product innovation, leading to better options and better outcomes for the whole industry.

About the author: Marcin Pazera, Ph.D., is the Technical Director for Polyisocyanurate Insulation Manufacturers Association (PIMA). He coordinates all technical-related activities at PIMA and serves as the primary technical liaison to organizations involved in the development of building standards. For more information, visit www.polyiso.org.

EPDs Confirm the Benefits of Polyiso

Photo: Johns Manville

EPDs from the Polyisocyanurate Insulation Manufacturers Association (PIMA) report the results of an exacting “cradle-to-grave” Life Cycle Assessment showing the merits of polyiso insulation for wall and roof applications. The findings include:

  • The energy savings potential of polyiso roof and wall insulation over a typical 60-year building life span is equal to up to 47 times the initial energy required to produce, transport, install, maintain, and eventually remove and dispose of the insulation.
  • Polyiso has a high return on embodied energy.
  • Polyiso roof and wall insulation offers high unit R-value per inch, zero ozone depletion potential, recycled content, opportunity for reuse, and outstanding fire performance.
Photo: Johns Manville

Evaluation for the third-party assessment was done by PE International and includes a cradle-to-grave life cycle assessment that covers every step in the process of creating and using polyiso products. Looking at everything from resourcing, production, transport, installation, maintenance, to eventual removal and replacement, the EPD measures impacts across a broad spectrum, including everything from how products might contribute to global warming, smog production, and ozone depletion to the energy and water use and waste disposal required at the end of its life.

Primary data from six PIMA manufacturer members was used for the underlying life cycle assessment and the EPD represents the combined weighted average production for these members.

What Is Polyiso?

Polyiso is a closed-cell, rigid foam board insulation consisting of a foam core sandwiched between two facers. In wall applications its facers, which are usually made of kraft paper-backed foil, are adhered to both sides of the foam before it is cut into sheets and packaged for shipment and the boards function both as continuous insulation—creating a thermal barrier that isn’t interrupted at every stud—and as an environmental envelope to protect the building from water, air, and heat infiltration. It is typically attached outside the wall framing and covered by an exterior finish.

It is the most widely used insulating material for above-deck commercial roof construction in North America. The boards are installed in one or more layers, depending on the insulation needs, on the steel, wood, or concrete roof deck structure and then covered with the roofing membrane.

EPD Polyiso Findings

  • High thermal efficiency. Because it is one of the most thermally efficient building insulations available in today’s marketplace, Polyiso requires less total thickness to deliver specified R-value in roof and wall assemblies, reducing overall construction costs and increasing usable building space.
  • High net return on embodied energy. A recent study comparing initial embodied energy to long-term energy savings achieved over 60 years in a typical commercial building suggests that the net energy savings potential of Polyiso wall insulation ranges between 20 and 47 times the initial embodied energy required to produce, transport, and install the Polyiso insulation.
  • Zero ozone depletion potential. All PIMA Polyiso manufacturer members produce rigid foam board with third-generation, zero ozone-depleting blowing agents. The blowing agent (pentane) used in Polyiso also is among the lowest in Global Warming Potential.
  • Recycled content. Polyiso insulation typically is manufactured using recycled material. The percentage of the recycled material by weight depends on the individual manufacturer, the thickness of the product, and the type of facer.
  • Opportunity for reuse. Although this declaration assumes the Polyiso wall insulation boards will be landfilled at the end of the wall assembly service life, it is possible to salvage and reuse the boards, either at the original site or on another construction site. Used Polyiso wall insulation may be collected and resold by several national logistics firms.

PIMA is currently updating its EPDs for polyiso wall and roof insulations, which will be available in Q1 of 2020.

New High-Density Polyiso Cover Board Offers Grade 1 Compressive Strength

Johns Manville (JM) introduces its ProtectoR HD High Density Polyiso Cover Board. According to the manufacturer, it provides excellent protection and can save time and expense for contractors. With a closed cell polyiso foam core and inorganic coated glass facers, this high-density cover board has a Grade 1 compressive strength and an R-value of 2.5. The product offers excellent resistance to moisture, hail, wind uplift and puncture, plus its light weight makes it easy to handle.

According to the company, the product has the lowest fastening rates in the market for a HD polyiso cover board — up to 50 percent fewer fasteners are needed to achieve FM I-90. As an example, it takes only eight fasteners per 4-foot-by- 8-foot board with adhered reinforced membrane (TPO, PVC, EPDM-R, mod bit) applications over a minimum 22 gauge steel or structural concrete deck to achieve FM 1-90 performance. 

“ProtectoR HD is an important addition to our polyiso cover board offering,” noted Tesha Kroll, Director of Product Management, Roofing Systems at JM. “It expands our line with a half-inch, high-density product and gives us the most comprehensive offering in the industry.” 

For more information, visit www.jm.com.

Commercial Roofing Contractor Flexes Its Muscles on 1.3 Million-Square-Foot Project

The new Under Armour distribution warehouse roof encompasses 1,286,000 square feet. It was topped with a TPO roof system manufactured by Johns Manville. Photo: Orndorff & Spaid Roofing Inc.

Industrial projects exceeding one million square feet of roofing might give some contractors pause, but at Orndorff & Spaid Roofing Inc., it’s just another day at the office.

The third-generation family run roofing contractor has been in business since 1953. Orndorff & Spaid services the Baltimore-Washington metro area, as well as parts of Virginia, Pennsylvania, and Delaware. It focuses primarily on large-scale commercial projects, including warehouses, distribution centers, retail businesses, schools and data centers.

Orndorff & Spaid routinely tackles roofing projects up to 1.5 million square feet. The company strives to keep as much work as possible under its own control, and the necessary supplies and equipment are always on hand at its 13-acre headquarters in Beltsville, Maryland.

“We’re a little bit unique as a roofing company in that we self-perform almost everything,” says Richard Harville, vice president of estimating. “We have our own cranes, all our own lifts. We do our own trucking. We have an in-house mechanic’s shop that repairs all of the equipment. All fuel servicing is done from our yard here. We also warehouse a fair share of material here because the logistics of running a job.”

Photo: Johns Manville

A recent new construction project at the former location of a Bethlehem Steel factory in Tradepoint St. John’s was right up their alley. “This was a new construction project, fairly conventional in most regards except for one, and that had to do with the site,” notes Harville. “Most of the site had been infilled over the years, and there was a lot of slag and other materials on this site, so it is not bedrock, for sure.” Due to the potential for movement, seismic expansion joints were specified. The gaps in the deck were as wide as 9 inches.

The owner of the complex was kept under wraps during construction phase, but the completed Under Armour distribution warehouse is now an area landmark. The roof encompasses 1,286,000 square feet, and the project had to be completed under a very tight schedule.

The general contractor on the project, FCL, reached out to Orndorff & Spaid during the design phase, and they recommended a TPO roof system manufactured by Johns Manville.

Harville shared his insights on the project with Roofing, along with members of the project team including Dane Grudzien, estimator; Carl Spraker, project manager, single ply; and Mike McKinney, project manager, sheet metal.

The Clock Is Ticking

Work began in April 2017 with a deadline to finish by the end of July. “The schedule was what made this project difficult,” notes Harville. “They had an end user set to come in and they were in an extreme hurry to get this thing done.”

Workers outside the safety perimeter were tied off 100 percent of the time using AES Raptor TriRex Safety Carts. Photo: Orndorff & Spaid Roofing Inc.

Harville and Spraker were confident the experienced team would be up to the task. “Once we got our bearings, we rock and rolled this job,” Spraker says. “We had up to 40 employees on the site and worked six days a week.”

The roof system installed over the structure’s metal deck included two layers of 2.5-inch polyiso and a 60-mil TPO membrane. “This job was mechanically attached at 6 inches on center, with perimeter and corner enhancements as required by FM,” notes Grudzien.

The roof installation began with a 10-man crew, and crews were added as the work ramped up. “We ended up with four 10-man crews, with the foreman on the first crew in charge the team,” Spraker recalls. “We just did as much as we could every day and kept track of everything. We averaged 700 squares a day. One day we did 1,000 squares.”

Crews worked on half of the building at a time, with falling back as needed to install flashings or strip in the gravel stop. “We started on one side of the building and went from end to end, following the steel contractor,” says Spraker. “When we finished one side, we came all the way back to the end where they started and followed them down the opposite side.”

The roof system incorporates 276 VELUX skylights that provide daylighting in key areas of the facility. Photo: Orndorff & Spaid Roofing Inc.

The roof also incorporated 276 VELUX skylights to illuminate key areas of the facility. Logistics Lighting delivered them all in one shipment, as Orndorff & Spaid requested. The 4-foot-by-8-foot skylights were stored on site and loaded to the roof with a crane for installation after a plasma cutter was used to cut holes in the deck. Prefabricated curbs were installed and flashed. “I had a separate crew designated just to install skylights,” Spraker notes

Safety precautions included perimeter warning lines, and workers outside that area were tied off 100 percent of the time, as they were when the skylights were installed. AES Raptor TriRex Safety Carts were used as anchor points.

Safety is always crucial, notes Harville, and the company makes it a priority on every project. “Our safety parameters go above and beyond standard state or federal mandating,” he notes.

Metal Work

The scope of work included large external gutters, downspouts and edge metal. According to McKinney, the sheet metal application was pretty straightforward. “There was just a lot of it — long, straight runs down two sides,” he says. “The coping was installed on the parapets on the shorter ends.”

Gutters were installed after the roof system was in place. “The roof wasn’t 100 percent complete, but once areas of the roof were installed and the walls were painted white, we could begin to install the gutters,” says McKinney. “After work was completed on one side, crews moved to the other side.”

The large gutter featured internal and external hangers, alternating 36 inches on center. All the metal was fabricated in house, and the exterior hangers were powder coated to match the steel.

Once the external hangers were installed, the gutter sections were lowered into place and secured by crew members in a man lift. “Once you had your hangers up, you could just lower the gutter over the side and into the external hangers,” McKinney explains. “We put the internal hangers into place after that. After the drip edge is installed, the single-ply crews come back and flash the drip edge into the roof system.”

Downspouts were custom-designed to match the building’s paint scheme. Photo: Orndorff & Spaid Roofing Inc.

Installation of the downspouts had to wait until the walls were painted. One wrinkle was the change in color of the downspouts. About two-thirds of the way up the wall, the paint scheme went from black to white, and the building owner wanted the downspouts to change colors to match. “We reverse-engineered it,” notes McKinney. “We measured from the paint line up and put in a 30-foot section of downspouts there, because we put our bands at the joints and we didn’t want to have the bands too close together in the middle of the wall.”

Talented Team

The project was completed on budget — and a month early. FCL hosted a barbecue to celebrate. “FCL had a big cookout for the contractors with a steak dinner for everyone,” notes Harville. “They really went over and above on that.”

The Orndorff & Spaid team credits the effort of all companies involved for the success of the project. “The steel contractor was phenomenal, and FCL did an excellent job of coordinating everything,” Spraker says.

The large gutter featured internal and external hangers. Photo: Orndorff & Spaid Roofing Inc.

The manufacturer also did an excellent job, notes Harville, who commended the work of Melissa Duvall, the JM sales rep on the project, and Barney Conway, the field rep, who visited the site at least once a week. “JM did a good job keeping us well stocked with material and getting us deliveries when we needed them,” Harville notes.

The team members at Orndorff & Spaid believe their confidence comes from experience and knowing that most of the variables are under control. “A lot of that has to do with the equipment we can bring to bear when we need to,” Harville states. “We control the logistics all the way through. Most companies are going to rent a crane or hire trucking — we do all of that. We have our own lifts, we have our own cranes, we do all of our flatbed trucking. We bring a unique process to the table. Beyond that, and our project managers are well versed at doing this. It’s not our first rodeo.”

TEAM

Architect: MacGregor Associates Architects, Atlanta, www.macgregorassoc.com
General Contractor: FCL Builders, Chicago, www.fclbuilders.com
Roofing Contractor: Orndorff & Spaid Roofing Inc., Beltsville, Maryland, www.osroofing.com

MATERIALS

Membrane: 60-mil TPO, Johns Manville, www.jm.com
Insulation: Two layers of 2.5-inch ENRGY 3 Polyisocyanurate, Johns Manville
Skylights: Dynamic Dome Skylights Model 4896, VELUX, www.veluxusa.com

Proper Storage and Handling of Polyiso Insulation

Photo: SOPREMA

Punxsutawney Phil certainly got it right this year; we have had six more weeks of winter — and then some — particularly in the Northeast. As winter turns to spring, building and repair projects which frequently involve the roof get underway. As you commence these new and re-roofing initiatives, here are a few key considerations about the storage and handling of polyiso roof insulation on a jobsite.

Storage

Polyiso insulation is typically shipped protected by a plastic wrap, plastic bag or both. This factory packaging is intended for handling the polyiso in the manufacturing plant and during transit; it should not be relied upon as protection at jobsites or other outdoor storage locations unless specified otherwise by the manufacturer.

Material delivery should be carefully coordinated with the roof application schedule to minimize outdoor storage. When short-term outdoor storage is necessary, whether at grade or on the roof deck, the following precautions should be observed:

  • Bundles should be stored flat above the ground utilizing included feet or on raised pallets. If possible, the bundles should be placed on a finished surface such as gravel, pavement, or concrete rather than on dirt or grass.
  • Unless specified otherwise by the manufacturer, cover the package and pallet with a waterproof cover, and secure to prevent wind displacement.

Note: Polyiso insulation is fully cured and fit for installation upon delivery. No additional storage time is required.

Handling

Photo: Johns Manville

Exercise care during handling of polyiso insulation to prevent breaking or crushing of the square edges and surfaces. Remove the polyiso bundles from trucks with proper equipment. Other means of mishandling, such as pushing pallets off the edge of the truck or “rolling” the pallet across the roof deck, must be avoided.

Product Application

Polyiso should always be installed on dry, clean roof decks in dry conditions. Follow the manufacturer’s recommendations regarding product application to ensure performance to the intended design life of the roofing system. Apply only as much polyiso roof insulation as can be covered by completed roofing the same day.

Construction Traffic

Avoid excessive traffic during roof construction of or on a completed roof surface. Although polyiso has been designed to withstand limited foot traffic, protection from damage by construction traffic and/or abuse is extremely important. Roof surface protection such as plywood should be used in areas where storage and staging are planned and heavy or repeated traffic is anticipated during or after installation.

Photo: Johns Manville

Some designers and membrane manufacturers specify the use of cover boards as a means of protecting the insulation. If specified, installers should ensure the cover board used is compatible with all components of the roofing system, is acceptable to the membrane manufacturer, and meets specified fire, wind, and code requirements.

Polyiso roof insulation, like other roofing materials, requires a proper understanding of storage, handling, and application to result in a properly constructed roof system. To find additional information about the proper storage and handling of polyiso insulation and for more technical information on polyiso roof and wall insulation, please visit www.polyiso.org.

Reinforced EPDM Membrane Offers Tape-to-Tape Technology

JM EPDMJohns Manville unveils a new reinforced EPDM membrane sheet with tape-to-tape technology, JM EPDM R FIT. According to the manufacturer, the product is field tested and proven to speed up installation by as much as four times, leading to lower labor costs. The expense and time involved when using other membranes that require primer is also eliminated since no primer is needed, leading to lower installed costs. The initial bond between tape-to-tape membrane sheets has been measured to be up to 20 percent stronger compared to field-fabricated seams. The watertight seam is never exposed on the rooftop, so the risk of contamination during installation and post installation is minimal.

John Petruzzi, president of FPS Roofing, installed the new product and was impressed with how quickly the crew learned techniques to apply it. “We were sold when we saw for ourselves how fast the seam went together. We were hands-on with the product, the whole crew liked it, and I will continue to use it,” said Petruzzi.

JM EPDM R FIT enables a longer window of application time since the 10-foot-by-100-foot rolls are completely pre-taped. This means there is no waiting on primer to flash off to get to the next step. “Our field tests demonstrate that this product will go down up to four times faster than anything already on the market,” said John Quante, JM EPDM Product Manager, Roofing Systems. “The tape-to-tape creates a stronger initial bond, making the installation more robust from day one. This product evolution will allow roofers to bid more aggressively and no doubt architects and specifiers will see the benefits too.”

For more information, visit www.jm.com/roofing.

Challenging Wintertime Installation Completed on Tight Schedule

Roofing work on the 250,000-square-foot expansion of Chicago Premium Outlets was completed in five months under challenging weather conditions. Photos: Johns Manville

The Chicago Premium Outlets 250,000-square-foot expansion includes 30 new or expanded stores, two new restaurants, 2,200 additional parking spaces, public art, outdoor fireplaces and a large pond. According to Mike Reynolds, senior project manager for Olsson Roofing Company Inc., headquartered in Aurora, Illinois, “Chicago Premium Outlets is more of a pedestrian mall since the expansion.”

Located approximately 40 minutes from downtown Chicago, the complex now features more than 170 stores including Adidas, Coach, Nike, kate spade new york, Movado Company Store, Saks Fifth Avenue Off 5th, Tommy Hilfiger, Vera Bradley, and Restoration Hardware. The reflecting pond is an inviting rest stop for shoppers, and it includes a play area and a pier-like pavilion with tables, chairs and umbrellas. To support the expansion, Olsson Roofing Company, the roofing contractor on the project, selected a TPO roofing system manufactured by Johns Manville.

A Challenging Installation

The project team faced two pressing challenges: weather and an aggressive timeline. The roofing-installation time frame fell between January and May, so the majority of the work needed to be completed during the coldest time of year. “We had our work cut out for us,” Reynolds says.

Photos: Johns Manville

The second challenge was the schedule. “The Olsson Roofing team worked several Saturdays and overtime to get the project finished as quickly as possible,” notes Reynolds. “We even heated the inside of the buildings to melt the snow on the roof and shoveled areas to make room for the product on the roof.”

Olsson Roofing chose to install the roof system using the RhinoBond induction welding attachment system from OMG Roofing Products. “We knew that RhinoBond would contribute to a successful installation of the TPO since we were dealing with below-freezing temperatures for most of the first 90 days,” Reynolds says.

Photos: Johns Manville

The 60-mil TPO was installed over two layers of ENRGY 3 roof insulation (one layer was 2 inches thick and the 2.5 inches). The majority of the roof surface features white TPO, but some EPDM was also used. “Olsson Roofing also used JM EPDM for the parapet walls since rubber is more flexible and quicker to install in cold weather and on vertical surfaces. They appreciated the ability to mix the systems and keep the project moving forward during cold-weather installation,” says JM sales representative Jason Conley. “With such a tight deadline, it was great to have the versatility of two excellent products — the durable 60-mil JM TPO and the flexibility of the JM EPDM, which provided just the right solution for our customer.”

TEAM

Architect/Specifier: FRCH Design Worldwide, Cincinnati, Ohio, www.frch.com
General Contractor: Graycor Inc., Oakbrook Terrace, Illionis, www.graycor.com
Roofing Contractor: Olsson Roofing Company Inc., Aurora, Illinois, www.olssonroofing.com

MATERIALS

Insulation: ENRGY 3, Johns Manville, www.JM.com
Membrane: 60-mil TPO in White, Tan and Light Grey, Johns Manville
Attachment System: RhinoBond, OMG Roofing Products, www.OMGroofing.com

PVC System Is the Answer for U.S. Bank Stadium Roof

U.S. Bank Stadium is topped with a PVC roof system that display’s the company’s logo. Photo: Johns Manville

When discussions began about the new U.S. Bank Stadium in Minneapolis, Minnesota, there was a request for an outdoor stadium. However, state and local government provided funding specifically for an indoor stadium that would be able to host major events like the professional football championship game and the college basketball championship game. As a result, a translucent roof and mobile front windows were designed to allow natural light to enter the stadium and to give fans a view of downtown Minneapolis. The mobile windows also allow fans to experience outdoor elements while providing protection from snow, rain and cold winter weather. The roof design was developed taking into consideration the budget and the region’s weather; it would be costly to make it retractable, and a sloped roof lends to a more secure option for snowy weather.

Challenging Task

Berwald Roofing Company Inc., headquartered in North St. Paul, Minnesota, installed an adhered PVC roof system manufactured by Johns Manville over the structure’s metal deck. In all, 280,000 square feet of grey 60-mil PVC were installed. The system also included a vapor barrier and two layers of 1.6-inch ENRGY 3, a rigid roof insulation board composed of a closed-cell polyisocyanurate foam core with fiberglass reinforced facers. Half-inch DensDeck Prime cover board from Georgia-Pacific was also installed.

The roofing portion of the project began in April 2015, with an aggressive completion deadline of November 1, 2015. The schedule and logistics on the project posed major hurdles. “Getting material 300 feet up to the roof was our biggest challenge,” says Berwald Roofing Senior Project Manager Steven Hegge. “A big part of that was scheduling time to share the cranes with the iron workers and general contractor.”

Another challenge was storing material during the installation due to the limited amount of space on the roof. “All the decking had to be installed as we went along, just before roof installation,” Hegge states. “We were on a very tight time schedule in this multiple-phase construction project.”

“The general contractor and Berwald Roofing have worked with Johns Manville on numerous stadium projects in the past and preferred to use JM PVC on this complicated stadium project,” notes Johns Manville sales rep Bob Deans. “This application is on a 3.75-inch to 12-inch slope on the north side of the building, which adds to the difficulty of installing a fully adhered PVC roof assembly.”

The Solution

Due to restricted loading space at the jobsite, materials arrived to Berwald’s yard directly from the manufacturer. They were then loaded on Berwald Roofing semi-trucks each day for delivery. Once they arrived at the site, they were immediately lifted to the roof via tower cranes and installed in the most efficient time frame, to meet the owners expected installation timeline.

The stadium seats approximately 65,000 people for most games. However, this space is built to be expandable to hold up to 73,000 attendees for special events such as the professional football championship game, which the stadium is scheduled to host on February 4, 2018, and for events like the college basketball championship game, which will be held there in 2019. U.S. Bank’s logo is prominently displayed on the rooftop. Charcoal grey 60-mil PVC membrane was cut to specification using a computerized cutter to create an exact replica of the U.S. Bank logo. Berwald Roofing then adhered the charcoal grey PVC on top of the grey 60 mil PVC membrane using JM PVC low-VOC membrane adhesive and then heat-welded the edges of material to finish the application of the logo.

TEAM

Architects: HKS Inc., www.hksinc.com; Studio Hive, www.studiohive.com; Studio Five; and Lawal Scott Erickson Architects Inc., http://lse-architects.com
General Contractor: Mortenson Construction, Minneapolis, Minnesota, www.mortenson.com
Roofing Contractor: Berwald Roofing Company Inc., North St. Paul, Minnesota, https://berwaldroofing.com

MATERIALS

Roof System: 60-mil PVC, Johns Manville, www.jm.com/roofing
Vapor Barrier: Johns Manville
Insulation: ENRGY 3® Insulation, Johns Manville
Cover Board: DensDeck Prime, Georgia-Pacific, www.gp.com

Johns Manville Joins NRCA’s One Voice Initiative, Becomes NRCA Partner Member

The National Roofing Contractors Association (NRCA) has announced Johns Manville, Denver, has joined NRCA’s One Voice initiative, upgrading its associate membership to “partner member.”

In early 2017, NRCA launched its One Voice Initiative to unite the roofing industry and speak with one voice about matters critical to the roofing industry’s continued success. To ensure all industry sectors are given an opportunity to participate, NRCA amended its bylaws to allow manufacturers, distributors, architects, engineers and consultants that choose to participate to become full members of the association. Previously, such rights were reserved only for contractor members.

“There is unique opportunity for the roofing industry to address the major issues we face. However, our work can only be accomplished with commitments from leaders from all sectors of this great industry,” said Reid Ribble, NRCA’s CEO. “Only together as a roofing community can we take this transformational approach to address our issues and concerns and achieve success in the future.”

Issues currently affecting the roofing industry include workforce development and certification; advancing the industry’s public policy agenda; building codes and insurance; and increasing professionalism throughout the industry.

“Johns Manville is proud to have been part of the roofing community for more than 160 years. We are always looking for ways to invest further to help move the industry forward,” says Joe Smith, president of Roofing Systems at Johns Manville. “Joining NRCA’s Once Voice initiative gives us a chance to be a part of something that helps our industry overcome challenges and make an impact where we think it matters most.”

For more information about NRCA and its One Voice initiative, visit www.nrca.net/onevoice.