Polyiso Wall Insulation Product Line Meets New Model Energy Codes

EnergyShield CGF Pro, glass faced polyiso insulation for commercial exterior walls, helps protect the integrity of the continuous insulation layer.

EnergyShield CGF Pro, glass faced polyiso insulation for commercial exterior walls, helps protect the integrity of the continuous insulation layer.

EnergyShield CGF Pro and EnergyShield Ply Pro are the newest members of the Atlas Roofing Corporation’s commercial polyiso wall insulation line.

EnergyShield CGF Pro, glass faced polyiso insulation for commercial exterior walls, helps protect the integrity of the continuous insulation layer by resisting jobsite damage, particularly in masonry, brick veneer and metal panel assemblies. Additionally, the product offers more vapor permeability than foil-faced insulation, has multiple NFPA fire tested assemblies and is engineered for incorporation into commercial wall assemblies.

EnergyShield Ply Pro is a Class A polyiso wall insulation bonded to plywood for commercial continuous wall insulation systems. The single component provides insulation, together with a fire-treated plywood substrate that can be mechanically fastened to various cladding systems, resulting in fast installations and labor savings. EnergyShield Ply Pro offers the highest R-value per inch of any rigid insulation.

“One of our key priorities is to make Polyiso products easy for designers and installers to use in commercial applications,” said Tom Robertson, EnergyShield bsiness unit manager. “These products are intended to bring design flexibility, R-value and NFPA fire tested assemblies advantages of Polyiso to a wider audience.”

EnergyShield CGF Pro and Ply Pro are available for ordering though an Atlas representative. The EnergyShield line of high performance insulation provides continuous insulation boards for all design, code and efficiency requirements. EnergyShield products are designed and manufactured in eight locations throughout the US and Canada by Atlas Roofing Corporation.

Cover Boards: The Membrane and Insulation Protector

Continuing on our roof system component analysis—after discussion of the roof deck, substrate board, vapor retarders and insulation—we now have worked our way up to the cover board. For the purpose of this discussion, the cover board is defined as the board placed upon the insulation as the final substrate to which the roof cover will be placed.

The purpose of the cover board is multifaceted; it can include:

    Insulation Protection: Placed to protect the thermal layer from the often deleterious effects of repeated foot traffic, which can result in insulation crushing, loss of roof-cover adhesive, inability to resist wind uplift and mechanical- fastener puncture through the membrane.

    Asphaltic core boards are very flexible and will conform to irregular surfaces and offsets without fracture. Here crews work to install the cover board in bead-foam adhesive in preparation for the three-ply modified bitumen roof cover. PHOTO: Clark Roofing

    Asphaltic core boards are very flexible and will conform to irregular
    surfaces and offsets without fracture. Here crews work to install the cover board in bead-foam adhesive in preparation for the three-ply modified bitumen roof cover. PHOTO: Clark Roofing

    Enhanced Roof-cover Adhesion: Cover boards can enhance the bond between the roof cover to the substrate.

    Enhanced Resistance to Wind Uplift: Cover boards and their ability to enhance the bond of the roof cover to the underlying substrate can result in an increased wind-uplift rating above and beyond that which can be provided with organic-faced insulations. They reduce the possible effects of facer-sheet delamination.

    Enhanced Fire Resistance: Many cover boards will enhance the fire resistance of the assembly.

    Hail Protection: Numerous studies show the value of cover boards in enhancing a roof cover’s ability to resist damage by hail.

    Provides Separation: A cover board provides separation between a roof cover and insulation that may not be compatible or the attachment adhesive of the roof membrane is not compatible with the insulation.

    Reduces Thermal Shorts (Energy Loss): Thermal insulation is often attached to the roof deck with mechanical fasteners, which results in conductive heat loss, up to 7 percent according to the Rosemont, Ill.-based National Roofing Contractors Association. This is a large value when some roof covers, which utilize mechanical attachment, purport to provide energy savings. Furthermore, when only one layer of insulation is used (a cardinal sin in my opinion) an additional 7 to 8 percent energy loss can occur. Placing a cover board above mechanically attached insulation and/or a single layer of insulation will enhance the energy performance of the roof system.

    Enhanced Roof-system Performance: I firmly believe the use of a roof cover board in a roof system improves the overall performance of the roof system and increases the probability of the roof attaining a long-term service life, which is the essence of sustainability. NRCA agrees; the organization recommends the use of cover boards in all low-slope assemblies.

Pages: 1 2 3

ECHOTape Repair Tape Now Sold by The Home Depot via HomeDepot.com

Pressure-sensitive tape supplier, ECHOtape’s full repair line will be sold online by a home improvement retailer, The Home Depot via HomeDepot.com. Launched in 2014 at the beginning of the third quarter, the repair line provides contractors with an alternative to duct tapes, and is designed to deliver solutions for repairs, sealing and waterproofing.

“We are very excited to be working with such a trusted name in home improvement like The Home Depot,” says Risa Edelstein, director of marketing for ECHOtape. “We dedicate our business to providing the ultimate tape solutions for a variety of applications and now contractors, remodelers, retrofitters and builders across the nation can purchase our performance-based repair tapes.”

ECHOtape’s comprehensive repair line is geared towards building contractors. In total, seven tapes are available now on HomeDepot.com. The products include three types of repair tapes with different color options:

  • All Purpose Repair Tape: This tape leaves little residue in comparison to a duct tape and is thick and flexible. Ideal for stretching and wrapping, this tape can be used for temporary repairs as well as for rips, tears, gashes and holes. This tape is available in clear and white.
  • All Weather Repair Tape: This tape is made with a butyl-based adhesive, which makes it sticky enough for applications to concrete, stone, wood, glass, metal, plastic, cement, plywood, and damp fabrics, and is ideal for sealing holes and cracks. It is puncture- and tear-resistant, waterproof, and will not crack in temperatures as low as -30 F or fail in temperatures as high as 200 F if applied correctly. The tape is available in white, silver and black.
  • All Leak Repair Tape: Also made with butyl-based adhesive, it is considered an extreme adhesive tape with double the stickiness of the All Weather Repair Tape. It shares many of the same qualities, including being waterproof, but is also resistant to corrosion. Because of its high level of adhesive, it can be used for repairing leaks in roof joints, skylights, RVs, pools and ponds. This tape is available in black and white.

“We are committed to making our products widely available to contractors in the U.S.,” says Edelstein. “This is an important step in increasing convenience for purchasers, and we look forward to continuing to expand our reach and product availability.”

Substrate Boards

The third installment in my series on the roof system is about the substrate board. (To read my first two articles, “Roofs Are Systems” and “Roof Decks”, see the January/February issue, page 52, and the March/April issue, page 54, respectively.) For the purpose of this article, we will define the substrate board as the material that is placed upon the roof deck prior to the placement of thermal insulation. It often is used in part to support vapor retarders and air barriers (which will be discussed in my next article in the September/October issue).

The type of substrate board should be chosen based on the roof-deck type, interior building use, installation time of year and the cover material to be placed upon it.

The type of substrate board should be chosen based on the roof-deck type, interior building
use, installation time of year and the cover material to be placed upon it.

Substrate boards come in many differing material compositions:
• Gypsum Board
• Modified Fiber Reinforced Gypsum
• Plywood
• High-density Wood Fiber
• Mineral Fiber
• Perlite

Substrate boards come in varying thicknesses, as well: 1/4 inch, 1/2 inch, 5/8 inch and 1 inch. The thickness is often chosen based on the need for the board to provide integrity over the roof deck, such as at flute spans on steel roof decks.

TOUGHNESS

The type of substrate board should be chosen based on the roof-deck type, interior building use, installation time of year and the cover material to be placed upon it. For example, vapor retarder versus thermal insulation and the method of attachment. Vapor retarders can be adhered with asphalt, spray foam, bonding adhesive, etc. The substrate board must be compatible with these. You wouldn’t want to place a self-adhering vapor retarder on perlite or hardboard because the surface particulate is easily parted from the board. Meanwhile, hot asphalt would impregnate the board and tie the vapor-retarder felts in better. The substrate board must have structural integrity over the flutes when installed on steel roof decks. The modified gypsum boards at 1/2 inch can do this; fiberboards cannot. If the insulation is to be mechanically fastened, a substrate board may not be required.

It should be more common to increase the number of fasteners to prevent deformation of the board, which will affect the roof system’s performance.

It should be more common to increase the number of fasteners to prevent deformation of the board, which will affect the roof system’s performance.

The substrate board should be able to withstand construction-generated moisture that may/can be driven into the board. Note: In northern climates, a dew-point analysis is required to determine the correct amount of insulation above the substrate board and vapor retarder, so condensation does not occur below the vapor retarder and in the substrate board.

Substrate boards are often placed on the roof deck and a vapor retarder installed upon them. This condition is often used to temporarily get the building “in the dry”. This temporary roof then is often used as a work platform for other trades, such as masonry, carpentry, glazers and ironworkers, to name a few. The temporary roof also is asked to support material storage. Consequently, the substrate board must be tough enough to resist these activities.

The most common use of a substrate board is on steel and wood decks. On steel roof decks, the substrate board provides a continuous smooth surface to place an air or vapor retarder onto. It also can provide a surface to which the insulation above can be adhered. Substrate boards on wood decks (plywood, OSB, planking) are used to increase fire resistance, prevent adhesive from dripping into the interior, provide a clean and acceptable surface onto which an air or vapor retarder can be adhered, or as a surface onto which the insulation can be adhered.

PHOTOS: HUTCHINSON DESIGN GROUP LTD.

Pages: 1 2

Roof Decks: Don’t Underestimate the Backbone of the Roof System

NOTE: This article is intended to provide general information while conveying the importance of the roof deck as an integral part of a roof system. Additional information about specific effects and concerns in regard to roofing can be found in The NRCA Roofing and Waterproofing Manual and various roof-cover manufacturers’ design guides.

Wood plank decks can provide a dramatic exposed roof deck.

Wood plank decks can provide a dramatic exposed roof deck.

The roof deck is the backbone and an integral component of all roofing systems. Its main function is to provide structural support for the roof system and, therefore, is a building element that needs to be designed by a licensed design professional because proper support of the roofing above is critical to the roof system’s success.

Roof decks also add thermal performance and fire resistance and ratings, provide slope for drainage and enhance wind-uplift performance. They must accommodate building movement and often determine the attachment method of the vapor retarder, insulation and membrane.

Roof Deck Types

There are many types of roof decks being installed today:

  • Steel
  • Precast concrete panel
  • Structural concrete
  • Cementitious wood fiber
  • Wood planking
  • Plywood/OSB
  • Poured gypsum

Some decks are covered with topping fills that become the base for the roof system and may also be an integral structural component:

  • Concrete
  • Lightweight insulation concrete topping
  • Lightweight aggregate concrete topping

Other deck toppings are available, such as poured gypsum and lightweight concrete with integral insulation, but these are considered substrate covers and not roof decks.

The most prevalent roof deck in the U.S. for commercial buildings is steel. On the West Coast, plywood/OSB is very popular. In addition to the roof decks already mentioned, in the course of roof-replacement work the designer may come in contact with the following:

While the “plate” test is not a preferred method, it can quickly and inexpensively give an indication of retained moisture in lightweight aggregate concrete roof deck covers.

While the “plate” test is not a preferred method, it can quickly and inexpensively
give an indication of retained moisture in lightweight aggregate
concrete roof deck covers.

  • Book tile
  • Lightweight precast concrete planks
  • Precast gypsum planks
  • Transite

Collaboration with the Structural Engineer

Because a roof deck is the foundation for the roof system, the designer needs to coordinate the roof system design requirements for the roof deck with the structural engineer to ensure the performance of the roof system. For example, the roof deck may need to extend to the roof edge. In this example, the roof deck may not need to extend to the roof edge for structural concerns but is needed to support the roof system; the roof designer must address this. If the roof deck is structurally sloped, the designer and engineer must determine whether the low point is a potential drain location. Are there steel beams in the way of the drain location? The roof deck must be attached to the structure to prevent uplift. And the designer and engineer must determine what the deflection of the roof-deck span may be between structural supports. For example, steel deck is sometimes installed with spans of 7 feet between joists and flexes (deflects) under foot traffic. This typically is not a good condition onto which a ridged roof system, such as a bituminous one, should be installed. It cannot be expected to accommodate such deflection. PHOTOS: Hutchinson Design Group Ltd. [Read more…]