Polyiso Sump Panel Arrives Ready to Install

Hunter Panels Target SumpTo provide contractors with a faster and easier way to create roof sumps, Hunter Panels introduces its new 4-foot-by-4-foot Target Sump. The polyiso insulation panel is ideal for low-slope applications, ships flat, arrives ready to install and increases the slope around drains to ensure water will flow to the drain instead of ponding.

According to the manufacturer, the Target Sump’s coated glass (CG) facer provides improved dimensional stability, fire performance, resistance to mold growth and is compatible with all major roofing membranes and application techniques.

The new product is Hunter’s second sump panel, extending options beyond the company’s 8-foot-by-8-foot hinged target sump. Both sumps are factory assembled and pre-cut for easy installation. According to the company, they install much faster than cutting insulation on the job site, and eliminate waste, which reduces dumpster fees.

“At Hunter we do whatever it takes to serve our customers,” said Jason Greenleaf, technical & tapered design services manager for Hunter Panels. “Customers asked for a 4-foot-by-4-foot sump option, and we delivered with an innovative product that helps make installation easier, and projects more profitable.”

A Michigan Contractor Is Challenged to Recreate a Roof’s 40-year-old Mural

Kevin Clausen has faced a lot of challenges during his 30 years at Great Lakes Systems, a Jenison, Mich.-based construction company specializing in single-ply commercial roofs. But when he received a call several years ago from a Kent County official about an unusual upcoming project, Clausen knew he might be taking on a challenge unlike any other.

Artist Alexander Calder created the 127-square-foot red, black and white mural painted on the roof of the Kent County Administration building.

Artist Alexander Calder created the 127-square-foot red, black and white mural painted on the roof of the Kent County Administration building.

Kent County is home to Grand Rapids, Mich. To understand the challenge that Clausen was about to face, it’s important to understand a little Grand Rapids history. In the late 1960s, swept along by the tide of enthusiasm for urban renewal, the city demolished 120 buildings in its aging downtown core and built a new City Hall and County Administration building, surrounded by a concrete plaza. The new government buildings were designed by architects who were shaped by mid-century ideas of good urban design: sleek, boxy single-use structures, easily accessed by automobile and, therefore, providing ample parking. Pedestrians were something of an afterthought.

At about the same time, the National Endowment for the Arts initiated its Art in Public Places Program. There was general agreement in Grand Rapids that the broad plaza in front of the new buildings seemed empty and generally lacked visual interest. The city applied for a grant to support the funding of a monumental sculpture to serve as a focal point for its new plaza and selected renowned sculptor Alexander Calder for the commission. Two years later, Calder’s sculpture—bright red, 43- feet tall, 54-feet long, 30-feet wide, weighing 42 tons—took its place on the central plaza. It was named “La Grande Vitesse”, which roughly translates into “Grand Rapids”. For obvious reasons, the broad plaza has been called Calder Plaza—and has been the focus of controversy ever since.

The Calder sculpture at ground level on the plaza inspired another important work of art in the area. The flat, unadorned roof of the administration building adjacent to the plaza was drawing attention for the wrong reasons. It was easily viewed from the nearby taller buildings, including the new City Hall, and several city administrators thought some sort of added visual element was necessary for the space. Calder again was pressed into service and designed a large mural for the roof of the administration building. When it was completed in 1974, the 127-square-foot red, black and white mural painted on the roof of the Kent County Administration building was the largest Calder painting in the world.

A DURABLE ROOF

Fast-forward three decades and the aging modified bitumen roofing membrane, which supported the Calder mural, had weathered badly and was in need of repair or replacement. The challenge? How to repair the roof and still preserve the Calder mural. Given the deteriorated condition of the roofing membrane, a complete tear-off was required. Basically, the task at hand was to replace the canvas of a painting and recreate the painting, maintaining its original appearance.

Great Lakes Systems, Jenison, Mich., was challenged to recreate the Calder mural on a new EPDM roof after tearing off the modified bitumen roof on which the mural was originally painted.

Great Lakes Systems, Jenison, Mich., was challenged to recreate the Calder mural on a new EPDM roof after tearing off the modified bitumen roof on which the mural was originally painted.

The team at Great Lakes Systems has a long track record of doing work for Kent County, including the jail, juvenile facility and several libraries. Therefore, county leaders turned to Great Lakes Systems when they realized they need- ed a creative solution to repair their unique roof. Clausen says the county wanted to preserve the mural, but a long-lasting, durable roof was a top priority. “They definitely wanted a high-quality roof,” he says.

The project faced other constraints, in addition to the painted surface. The administration building is located in a prominent spot in the middle of downtown Grand Rapids, near the museum dedicated to former President Gerald Ford and adjacent to two major expressways. No interruption of normal activities could be allowed—either on the plaza or in the building supporting the Calder mural. And—perhaps most challenging—Great Lakes Systems was given three weeks to complete the project before the inaugural ArtPrize competition would take over much of downtown Grand Rapids. That meant the team would have two weeks for the roof installation, leaving one week to repaint the mural. This was less than half the time usually required for a comparable project.

For Clausen, one part of the project was easy. He had used EPDM membrane on a variety of prior projects for county buildings, and county officials had been pleased with the results, especially the balance of cost-effective installation and long service life. “We looked at other membranes, given the nature of the project, but we always came back to EPDM, given its 30-year plus lifespan,” Clausen notes. “If we have to paint again, that’s OK, but we don’t want to reroof.”

For this project, fully adhered EPDM, as well as insulation ad- hered to the concrete deck, offered two important benefits: a painting surface that would be appropriate for the repainted mural and minimal noise (compared to a mechanically attached system) so that work in the building below could continue as normal.

Great Lakes Systems used 60-mil EPDM to replace the aging modified bitumen system. The 18,500-square-foot roof was backed by two layers of 2-inch polyiso insulation, and the EPDM membrane was covered with an acrylic top coat to provide a smooth surface for the new painting. The top coat matched the three colors of the mural—red, black and white. The red was a custom tinted acrylic paint deemed to be compatible with the EPDM membrane and the black and white acrylic top coat provided by the EPDM manufacturer.

Great Lakes Systems took aerial photos of the existing roof, created a grid of the roof and—scaling the design from the photos—recreated the mural exactly, a sort of large-scale paint- by-number approach.

Great Lakes Systems took aerial photos of the existing roof, created a grid of the roof and—scaling the design from the photos—recreated the mural exactly, a sort of large-scale paint- by-number approach.

A BEAUTIFUL ROOF

The Great Lakes Systems’ team applied a creative approach to recreate the mural, adhering carefully to the original design. Because the county used the same colors on its street signs as in the original mural, color codes were available to allow the team to access colors that were identical to those specified by Calder.

Great Lakes Systems took aerial photos of the existing roof, created a grid of the roof and—scaling the design from the photos—recreated the mural exactly, a sort of large-scale paint-by-number approach. The most intricate part of the painting was the layout. Although some free-hand painting had to be done along several jagged edges, the team painstakingly followed the scaled grid and applied chalk lines to outline the original design on the repaired roof. Roller applications were used at the border of the chalk lines to define individual spaces and mark the stopping and starting points for the different colors. Following this “outlining” work, the large areas were sprayed to complete the painting process. The three-man painting crew finished the job with several days to spare, helped along with very good weather.

The roofing project was an informal jump-start toward reimagining uses for Calder Plaza. This past summer, Grand Rapids residents were given the opportunity to voice their preferences for new landscaping for the plaza, provide input for activities that would attract more families and children, and generally make the space more pedestrian friendly. The new proposals are generating excitement and enthusiasm in Grand Rapids. As the new plans become reality, the citizens of Grand Rapids can be assured the Calder mural and the roof supporting it will be doing their part to add beauty and shelter to Calder Plaza and its buildings for decades to come.

Roof Materials

60-mil EPDM: Firestone Building Products Co.
2-inch Polyiso Insulation: Firestone Building Products
Black and White Acrylic Top Coat: Firestone Building Products

PHOTOS: Great Lakes Systems

An Oceanfront Elementary School Poses Tough Problems, but a Coated Aluminum Standing-seam Roof Passes the Test

Elementary school students sometimes find themselves staring out the window, but few have a view to rival that of the students at Sullivan’s Island Elementary School in Sullivan’s Island, S.C. The school is located on oceanfront property, and when it was time for the original building to be rebuilt, the site posed numerous challenges.

The standing-seam roof is made up of 0.040-inch coated aluminum panels that are 18-inches wide.

The standing-seam roof is made up of 0.040-inch coated aluminum panels that are 18-inches wide.

The original school had been built in the 1950s. It had been designed for 350 students and built on grade. The new school would have to be elevated to conform to modern building codes and service 500 students. The structure would not only have to withstand high winds, severe weather and a salt-air environment, but it also would have to fit into its surroundings. Many residents feared the larger building would look out of place in the cozy beach community. It was architect Jerry English’s job to figure out a way to make it work.

English is a principal at Cummings & McCrady Architects, Charleston, S.C., the architect of record on the project. He worked with a talented team of construction professionals, including Ricky Simmons, general manager of Keating Roofing & Sheet Metal Co. Inc. in Charleston, to refine his vision and bring it to life. English and Simmons shared their insight on the project, and they both point to the building’s metal roof as a key element in the project’s success.

CHALLENGING DESIGN

Cummings & McCrady Architects handles a broad range of commercial, institutional, religious and historic work—new construction and renovation. The firm had done a lot of work with the Charleston County School District over the years, including a small library addition for the original Sullivan’s Island Elementary School after Hurricane Hugo passed through in 1989, and it was awarded the new construction project.

The building’s foundation system had to meet strict regulations regarding resistance to storm surge. The building is elevated on concrete piers, which were topped with a 6-inch reinforced concrete slab. Metal framing was constructed above the slab. “With our building, we had to raise the underside of the structure almost 7 feet above the grade,” English recalls. “What we did is we built it a little bit higher than that so the underside could be left open and used for playground.”

For English, coming up with a design that would reflect the character of the local community was the biggest challenge. To achieve that goal, he broke up the building into four sections and spread them across the site with the tallest sections in the center. “We have four linked segments that transition down on each end to the height of the adjacent residences,” he says.

The roof was also designed to blend in with the neighboring homes, many of which feature metal roofs. “The idea of pitched roofs with overhangs became a strong unifying element,” English explains.

English checked with several major metal roofing manufacturers to determine which products could withstand the harsh oceanfront environment and wind-uplift requirements. “Virtually every one of them would only warranty aluminum roofing,” he says. “The wind requirement and the resistance to the salt air were what drove us to a coated aluminum roof.”

The majority of the panels were factory-made, but the manufacturer supplied the rollforming machine and the operator to handle the onsite rollforming of the largest panels.

The majority of the panels were factory-made, but Petersen Aluminum supplied the rollforming machine and the operator to handle the onsite rollforming of the largest panels.

The standing-seam roof is made up of 0.040-inch coated aluminum panels that are 18-inches wide. Metal trusses give the roof system its shape. English tapped the resources of roof consultant ADC in Charleston and the metal roofing manufacturer to iron out all the details. English wanted to avoid any cross seams in the metal roofing, so he worked with Dave Landis, the manufacturer’s architectural/technical sales manager, to arrange for the longest panels to be formed onsite.

The roof also includes two decks that serve as outdoor teaching areas. These sections were covered with a two-ply modified bitumen roof system and protected with a multi-colored elevated concrete paver system.

Another standout feature is the school’s entry tower, which is topped by a freestanding hip roof featuring curved panels. This roof was constructed with panels that were 12-inches wide. “We found other examples on the island where the base of the roof flares a little bit as a traditional element, and with the closer seamed panels they were able to get those curves,” English says. “It’s a refinement that’s a little different than the rest of the roof, but it’s the proper scale and the fine detailing pulls it together and sets if off from the main roof forms that are behind it.”

PHOTOS: Petersen Aluminum Corp.

Pages: 1 2

Project Profiles: Retail

Sierra Nevada Brewery, Mills River, N.C.

About 58,000 pounds of copper were installed on the brewery.

About 58,000 pounds of copper were installed on the brewery.

TEAM

Roofing Contractor: The Century Slate Roofing Co., Durham, N.C.
Architect: Matthew Galloway of Russell Gallaway Associates Inc., Chico, Calif.

ROOF MATERIALS

Approximately 423 squares of 1/2-inch-thick, 18-inch-tall by random width Unfading Green Slates were installed by hand on the project. This was close to 750,000 pounds of slate, or 375 tons.

About 3,000 feet of custom copper gutters and downspouts, conductor heads and 100 squares of painted standing-seam panels were fabricated, and pre-built copper clad dormers and decorative copper cornices were installed.

The project also included 35 squares of copper standing-seam roofing, 25 squares of soldered copper flat-seam roofing and 115 squares of copper wall cladding. About 58,000 pounds of copper were installed on the brewery.

Everything on the building is oversized and that meant everything had to be built to support the heavy structural loads and live loads from wind and mountain snow. The large roof faces called for 10-inch custom copper gutters. When you have gutters that large in the mountains of North Carolina you have to consider the extraordinary weight of the annual snow.

In addition to snow guards being installed on the slate roof, custom 1/4-inch-thick copper gutter brackets fastened the gutter to the fascia. It is typical on steel-framed construction, particularly on this scale, that the framing is out of square and there is widely varying fascia and rake dimensions.

Approximately 423 squares of 1/2-inch-thick, 18-inch-tall by random width Unfading Green Slates were installed by hand on the project.

Approximately 423 squares of 1/2-inch-thick, 18-inch-tall by random width Unfading Green Slates were installed by hand on the project.

However, these items should not appear out of square or have varying dimensions. Great care had to be taken to measure and custom bend onsite all the detail flashings so everything appeared perfect. This took many skilled craftsmen, a great deal of time and the absolute drive to provide the highest quality work.

Slate Manufacturer: Evergreen Slate Co. Inc.
Copper Fabricator: K&M Sheet Metal LLC
Supplier of Underlayment, Copper Sheets and Coil, Insulation and Nailbase Sheathing: ABC Supply Co. Inc.

ROOF REPORT

The new-construction project began in November 2013 and was completed in September 2015.
The team completed the slate installation so well that The Century Slate Co. was awarded the 2015 Excellence in Craftsmanship Award by Evergreen Slate for the project.

PHOTOS: The Century Slate Roofing Co.

Pages: 1 2 3 4

After Years of Roof Leaks, a Laboratory That Produces Theatrical Equipment and Software Undergoes a Complex Reroofing

Founded in 1910, Rosco Laboratories is a multi-national producer of equipment, software and products for the theatrical, film, and television industries and architectural environment. As with every aging flat roofing system, water leakage was becoming a recurring problem at Rosco’s Stamford, Conn., facility. The severity of the leakage was further exacerbated by the lack of roof drainage (only two roof drains serviced the entire building) and poor deck slope conditions (less than 1/16 inch per foot).

The gypsum decking was cut out within the limits of the entire framing “bay” and infilled with galvanized metal decking. The longitudinal deck panel edge was seated atop the horizontal leg of the bulb-tee section (visible in the center of the photograph) and mechanically fastened using self-tapping screws. The ends were supported by the steel purlins. The underside of the decking was prepainted to match the ceiling finish. Supplemental structural support consisting of strips of 14-gauge galvanized sheet metal were attached to the bottom of each bulb-tee section contiguous to the repair to provide additional support for the adjacent gypsum roof decking segment.

The gypsum decking was cut out within the limits of the entire framing “bay” and infilled with galvanized metal decking. The longitudinal deck panel edge was seated atop the horizontal leg of the bulb-tee section (visible in the center of the photograph) and mechanically fastened using self-tapping screws. The ends were supported by the steel purlins. The underside of the decking was prepainted to match the ceiling finish. Supplemental structural support consisting of strips of 14-gauge galvanized sheet metal were attached to the bottom of each bulb-tee section contiguous to the repair to provide additional support for the adjacent gypsum roof decking segment.


Rosco representatives employed traditional methods to control and/or collect the moisture within the building by use of several water diverters. This technique was effective but Rosco representatives soon recognized this was not a viable long term solution as the physical integrity of the roof structure (deck) became a principal concern to the safety of the building occupants.

The Fisher Group LLC, an Oxford, Conn.-based building envelope consulting firm was retained by Rosco in March 2009 to survey the existing site conditions and determine the need for roofing replacement. The existing roofing construction, which consisted of a conventional two-ply, smooth-surfaced BUR with aluminized coating, exhibited numerous deficiencies (most notably severe alligatoring) and was deemed unserviceable. Construction documents, including drawings and specifications and a project phasing plan were developed by Fisher Group to address the planned roof replacement.

Bid proposals were solicited from prequalified contractors in June 2010, and F.J. Dahill Co. Inc., New Haven, Conn., was awarded the contract on the basis of lowest bid.

Existing Conditions

The building basically consists of a 1-story steel-framed structure constructed in the 1970s. It is a simple “box”-style configuration, which is conducive to manufacturing.

In conjunction with design services, destructive test cuts were made by Fisher Group in several roof sections as necessary to verify the existing roofing composition, insulation substrate, moisture entrapment, and substrate/deck construction. A total of four distinct “layers” of roofing were encountered at each test cut. The existing roofing construction consisted of alternating layers of smooth- and gravel-surfaced, multi-ply felt and bitumen built-up roofing. The bitumen contained throughout the construction was fortunately asphalt-based. Succeeding layers of roofing were spot mopped or fully mopped to the preceding layer (system). The combined weight of the roofing construction was estimated to be upwards of 20 to 22 pounds per square foot when considering the moisture content. This is excessive weight.

The roof insulation panels were set into ribbons of low-rise polyurethane foam insulation adhesive. The adhesive was applied in a continuous serpentine bead, spaced 6 inches on-center throughout the field of the roof.

The roof insulation panels were set into ribbons of low-rise polyurethane foam insulation adhesive. The adhesive was applied in a continuous serpentine bead, spaced 6 inches on-center throughout the field of the roof.


It is interesting to note that a minimal amount of roof insulation was present in the existing construction. Insulation was limited to a single layer of 1/2-inch-thick fiberboard. Additional insulation would need to be provided as part of the replacement roofing construction to increase the roof’s thermal performance and comply with the prescriptive requirements of the Connecticut State Energy Conservation Construction Code.

The structural substrate, or decking, is conventional in nature, comprised of poured gypsum roof decking. The roof decking incorporates 1/2-inch gypsum formboard loose laid between steel bulb-tee supports spaced about 32 inches on-center. The poured gypsum roof decking in this instance was utilized as the structural substrate and for insulating purposes. Poured gypsum roof decking has a minimal insulating value of perhaps R-2 to R-3, which is obviously considered to be minimal by present standards.

A representative number of bulk material samples were obtained by Fisher Group from the existing roofing construction as necessary to determine the material composition. The sampling included field membrane roofing plies, coatings and cements, and associated roof penetration and perimeter flashings. Laboratory analysis revealed that the second, third and, in some instances, fourth roofing “layers” (field membrane plies) contained varying amounts—5 to 10 percent—of asbestos (chrysotile) which would necessitate full abatement of the roofing construction.

PHOTOS: The Fisher Group LLC

Pages: 1 2 3

Manufacturers Partner to Offer Polyiso

Fabral has partnered with Atlas Roofing Corp. to provide closed-cell foam insulation, also known as polyiso, for reducing thermal conductivity between the interior and exterior of a building.

Fabral has partnered with Atlas Roofing Corp. to provide closed-cell foam insulation, also known as polyiso, for reducing thermal conductivity between the interior and exterior of a building.

Fabral has partnered with Atlas Roofing Corp. to provide closed-cell foam insulation, also known as polyiso, for reducing thermal conductivity between the interior and exterior of a building. Fabral offers three insulation products—ACFoam-III, ACFoam Nail Base and ACFoam CrossVent and fasteners—to simplify the ordering process for its customers. Suited for Fabral standing-seam metal roof systems, polyiso is manufactured using CFC-, HFC- and HCFC-free foam technology and is recognized by GREENGUARD as resistant to mold. The insulation offers high-unit R-value per inch, fire performance, no ozone depletion potential, and can be recycled or reused.

Prefabricated Edge Metal Helps Shape Unique Roofs on a Georgia Hospital

To expand its services and make it easier for patients and visitors to navigate its facility, Gordon Hospital, Calhoun, Ga., underwent a $37 million expansion. The project added 59,000 square feet of hospital space, renovated 11,500 square feet of space, and created a new patient tower entrance to separate inpatient and outpatient service entrances. The various aspects of the project included 11 different roof areas, so the project’s general contractor, the Atlanta office of Birmingham, Ala.-based Brasfield & Gorrie, brought Atlanta’s Diamond Roofing Co. into the project during concept design.

The architects designed all the curves and unique walls to make the campus beyond ordinary and give the hospital a certain appeal.

The architects designed all the curves and unique walls to make the campus beyond ordinary and give the hospital a certain appeal.

“The hospital addition and renovation was still just a sketch and a narrative, and we worked together to understand the owner’s needs and architect’s intent,” says Dave Mossige, Diamond Roofing’s president. “Roofing systems have be- come very complex over the years and it really does take a roofing specialist to navigate the numerous options and decide the best roofing systems for the project.”

Having the roofing contractor onboard from inception also helped with staging. When it became apparent that two canopies between the new and existing buildings would pose significant challenges with materials’ access, the team was able to plan ahead and stock-pile materials near the area months pri- or to needing them.

GETTING THINGS LEVEL

Because this was a fast-track project, 10 to 15 crew members worked across multiple roof areas. “All the other trades come in behind us once we have the roof ready, so getting the roof area dried-in was key to the schedule,” Mossige says. “That’s why we chose a more durable two-ply modified bitumen rather than a single-ply system for the roofing. Disturbances that happened to the base while the trades were working off the roofs could be quickly and easily repaired before we applied the cap sheet.”

The roofing areas added up to 25,400 square feet of space, including the main roof, penthouse and various other canopies. The main roof on the new addition was unique because it was divided into two portions: one with a steel deck and another with a concrete deck for future vertical expansion. The concrete deck was 5-inches higher than the steel deck.

To make the steel deck meet the thickness of the adjacent concrete deck for a level roof, Diamond Roofing’s team mechanically fastened 5 inches of polyisocyanurate insulation on the steel and then installed a 1/4-inch-per-foot-total tapered ISO system. The team then applied a cover board to increase the system’s wind rating and provide better adhesion of the base ply. The tapered system and cover board were set in ribbons of low-rise foam adhesive. The next layer was an SBS modified bitumen as a cold-process adhesive and then a fire-rated granular cap sheet, also set in a cold-process adhesive.

Although Diamond Roofing has a sheet-metal shop in which team members fabricate edge metal, it worked with a supplier to source prefabricated edge metal that had been formally tested to meet or exceed the hospital's required FM 1-105 criterion.

Although Diamond Roofing has a sheet-metal shop in which team members fabricate edge metal, it worked with a supplier to source prefabricated edge metal that had been formally tested to meet or exceed the hospital’s required FM 1-105 criterion.

PRECISE EDGE METAL

Although Diamond Roofing has a sheet-metal shop in which team members fabricate edge metal, most of the roofing firm’s product is equivalent to a wind rating of FM 1-60 and FM 1-90. FM approval ratings apply to uplift pressures in pounds per square foot. Hospitals are constructed to stricter standards, however, and officials at Gordon Hospital wanted to ensure an FM 1-105 approval rating. Diamond Roofing worked with a supplier to source prefabricated edge metal that had been formally tested to meet or exceed the FM 1-105 criterion.

The ability to order the sheer volume of edge metal needed also saved time on the project. “We had over 2,500 lineal feet of edge metal on this project. That would’ve taken us three weeks to fabricate,” Mossige explains. “In addition, the highly unique specifications of the edge metal needed for the project made it more cost-effective for us to outsource it.”

The edge metal needed to be a heavy gauge of 0.063 prefinished aluminum with a protective Kynar 500 resin-based coating. The architects also wanted welded mitered corners. In certain places on the roofs, unusual radiuses and slopes—occasionally joining with straight coping at offset angles—meant some inside and outside miters had to be exactingly produced for odd angles like 104 and 140 degrees.

For example, on one parapet, two different elevations come together at a corner, making precision critical for the manufacturer and installer. “When you are dealing with preformed metal, you have to be precise,” Mossige notes, “but when you’re doing a raised, offset miter, you have to be perfect.”

PHOTOS: OMG EDGESYSTEMS

Pages: 1 2

PIMA Names Chairman of the Organization

During its annual meeting, the Polyisocyanurate Insulation Manufacturers Association (PIMA) announced that Helene Pierce, vice president of Technical Services, Codes and Industry Relations at GAF, assumed the chairmanship of the organization on Jan. 1, 2016. She succeeds Jim Whitton of Hunter Panels, who has served as the PIMA chairman for the last two years.

“Helene has extensive and deep technical understanding of the polyiso insulation industry and has served the association on numerous task groups and initiatives—she is the perfect choice to lead PIMA,” says Jared Blum, PIMA president. “We look forward to her leadership as the building, architecture and specifying communities continues to embrace and reiterate the value of building thermal performance.”

Pierce has spent more than 34 years in the roofing industry and has been very active in many of the industry’s organizations. She received the ASTM Award of Merit and title of Fellow from ASTM Committee D08, the James Q. McCawley award from the Midwest Roofing Contractors Association and the title of Fellow of the Institute from the Roof Consultants Institute.

Among the many groups in which she has been active include ARMA; ASTM International; CSI; the RCI Foundation; CEIR; SPRI; RCMA; PIMA; and the CRRC. Pierce has also authored and presented numerous papers for the roofing industry and is a frequent contributor to industry publications.

“PIMA represents North America’s insulation of choice and its diverse membership provides a truly collaborative environment for all of our members,” says Pierce. “Given the importance of energy efficiency in the building envelope, the demand for continuous high-performance insulation for the roof and walls continues to grow. As the voice for polyiso insulation used in the building envelope and through its many initiatives in education, building codes and standards, technical resources, and QualityMark, PIMA’s support of the polyiso industry will certainly continue to grow.”

Attended by more than 100 members—polyiso manufacturers and suppliers to the industry—PIMA’s two-day annual meeting featured an educational session, which presented perspectives on energy infrastructure issues impacting the industry. During the annual meeting, members heard from:

  • Lisa Jacobson, president, Business Counsel for Sustainable Energy
  • Brad Markell, executive director, AFL-CIO Industrial Union Council
  • Amy L. Duvall, senior director, Federal Affairs, American Chemistry Council
  • Sarah Brozena, senior director Regulatory and Technical Affairs, American Chemistry Council

“Energy efficiency remains a critical issue as illustrated during the recent COP21 meeting, where there was a palpable shift in the attitude of the business community towards energy-efficiency practices and policies,” adds Blum. “Our industry stands ready to support any agreement stemming from the COP21 meeting and our role as a trade association is to ensure our members have access to the resources they need.”

SOPREMA Joins the Polyisocyanurate Insulation Manufacturers Association

The Polyisocyanurate Insulation Manufacturers Association announced that SOPREMA has joined the group as a manufacturing member.

“The addition of SOPREMA to the polyiso industry and the PIMA family reflects the continuing growth of polyiso as North America’s insulation product of choice,” says Jared Blum, president PIMA. “SOPREMA’s construction industry leadership role is well acknowledged, and the PIMA Board of Directors looks forward to the active involvement of the company.”

SOPREMA joins PIMA’s six manufacturing members: Atlas Roofing, Firestone Building Products, GAF, Hunter Panels, Johns Manville and Rmax.

SOPREMA is an international manufacturer specializing in the development and production of innovative products for waterproofing, insulation, soundproofing and vegetated solutions for the roofing, building envelope and civil engineering sectors. Founded in 1908 in Strasbourg, France, SOPREMA now operates in more than 90 countries.

With its first polyisocyanurate insulation plant in North America, SOPREMA will expand its presence in the construction market by offering complete roofing solutions to its clients, while managing all production phases.

“SOPREMA is proud to join PIMA and contribute to the energy performance of buildings and the reduction of greenhouse gases as a manufacturer of high-performance insulation boards,” says Richard Voyer, executive vice president and CEO of SOPREMA North America.

Learning and Trying New Things

The start of a new school year is always an exciting time. As I see my friends post photos on Facebook of their kids’ first days of school, I am reminded of the excitement I felt way back when. I loved wearing a new outfit, seeing friends I hadn’t seen in awhile and anticipating all the fun—and learning—in the year ahead. In a way, I get to recreate those feelings each time I put together a new issue of Roofing. I’m continually learning about the industry and this issue is no different.

For example, in “From the Hutchinson Files”, Thomas W. Hutchinson, AIA, FRCI, RRC, CSI, RRP, principal of Hutchinson Design Group, Barrington, Ill., and a Roofing editorial advisor, explains the virtues of cover boards. As he points out in his article, the use of cover boards can now be considered a good roofing practice.

Meanwhile, Jared O. Blum, president of the Polyisocyanurate Insulation Manufacturers Association, Bethesda, Md., explains a new white paper about polyisocyanurate insulation R-values in “Cool Roofing”. He states the R-value of polyiso roof insulation is reduced at some point at lower temperatures, but within any reasonable temperature range associated with typical building operating conditions in almost any climate in North America the difference appears to be very small.

In addition, we here at Roofing like to learn and try new things. As a result, this issue is interactive! Please download the free Layar Augmented Reality app, which was designed to bring print to life. Then hover over page 45 in the print edition with your smartphone or tablet to view a video about Virginia Polytechnic Institute and State University’s Indoor Practice Facility in Blacksburg, Va., which features almost 1,000 squares of 238-foot-long, curved, standing-seam metal panels. We’re really excited about this new capability and would love to know what you think.