With Today’s ‘New Age’ Roofs, Removing All System Components May Not Always Be Required or in the Clients’ Best Interest

Years ago, reroofing design involved removing all roof-system components down to the roof deck and rebuilding a new roof system up from there.

PHOTO 1: This EPDM roof’s service has been extended for nine years and counting, approaching 30 years in-situ performance. Here, the restoration of perimeter gravel- stop flashing and lap seams, as well as detailing of roof drains, penetrations and roof curbs, is nearing completion.

PHOTO 1: This EPDM roof’s service has been extended for nine years and counting, approaching 30 years in-situ performance. Here, the restoration of perimeter gravel- stop flashing and lap seams, as well as detailing of roof drains, penetrations and roof curbs, is nearing completion.

Although that is still a viable option and often performed, the coming of age of many single-membrane roofs has altered the method of installing a new reroof system. Options now include EPDM roof restoration; removal of the roof membrane and the addition of new insulation and roof membrane; using the existing roof membrane as a vapor retarder and adding new insulation and roof membrane; removal of the roof cover and installation of new, leaving all the existing insulation in place.

When I first moved into roof-system replacement design some 35 years ago, the dominant roof systems being removed were bituminous, specifically gravel-surfaced asphaltic and coal- tar-pitch built-up roofs. As they aged, their surfaces often started to blister, crack and undulate with ridges—surfaces often unsuitable for roof recover. The bitumen often was deteriorating because of ultraviolet-light exposure; when that occurred, the deterioration of the felts was not far behind. The insulation was mostly perlite or high-density wood fiber; the amount was minimal (low thermal value) and, more often than not, flat or with very minimal slope. Drains were erratically placed, tapered insulation was not often the case and roof edges were predominately gravel stops. In the Midwest, many roof decks were cementitious wood fiber. The roof covers were often patched again and again, even as water infiltrated the system.

PHOTO 2: The re-flashing of roof curbs is an integral part of the restoration of EPDM roof membranes.

PHOTO 2: The re-flashing of roof curbs is an integral part of the restoration of EPDM roof membranes.

When replacement was necessary, the roof-edge sheet metal was removed; the entire existing roof system was removed down to the roof deck; and a new roof system was designed, often incorporating vapor retarders/temporary roofs so the removal of multiple layers of roofing could be accomplished, roof curbs raised, and enhancements of roof drains, curbs and roof edge could occur prior to the installation of the new roof cover. Tapered insulation designs be- came common; this would often require realignment of the roof drains to simplify the tapered design and installation. To accommodate the new insulation thickness, the roof edge had to be raised as did roof curbs, RTU curbs, plumbing vents and roof drains via extensions. Roof membranes changed from bituminous to those classified as “single plies”: EPDM, PVC, CPE, CSPE.

These new roof-system replacement designs resulted in superior roofs—85 percent of all the reroofs I have designed are still in place, still performing, still saving the owner money. Life cycles have moved from eight to 12 years, up to 18 to 25 years and longer. They certainly were more expensive than the original installation and, if a roof designer didn’t have a handle on costs to provide the owner with estimated costs of construction, were often shocking. But these roof systems were good for the client, economy, environment and public.

PHOTO 3: When restoring EPDM roof membranes, the removal of roof penetration flashings and installation of new with target patches will provide another 20 years of watertight protection.

PHOTO 3: When restoring EPDM roof membranes, the removal of roof penetration flashings and installation of new with target patches will provide another 20 years of watertight protection.

Over the years, codes and standards have changed, especially in the past decade, requiring increased insulation values and roof-edge sheet-metal compliance with greater attention to wind-uplift resistance. As the new millennium arrived, these “new age” roofs came of age and owners started to look at their replacement—often with increased costs stifling their budgets.

LEAN THINKING

A factor that increased the performance of many roof systems in the past 20 years was the emergence and growth of the professional roof consultant, often degreed in architecture or engineering, educated in roofing, tested and certified. These professionals brought a scientific approach to roof-system design. Raleigh, N.C.-based RCI Inc. (formerly Roof Consultants Institute) was the conduit for this increased level of knowledge, professionalism and the growth in quality roof-system design and installation.

PHOTO 4: On this roof, the existing loose-laid membrane was removed, open insulation joints filled with spray-foam insulation and new insulation added to meet current code requirements. A new 90-mil EPDM membrane was installed and existing ballast moved onto it to 10-pounds-per-square-foot coverage.

PHOTO 4: On this roof, the existing loose-laid membrane was removed, open insulation joints filled with spray-foam insulation and new insulation added to meet current code requirements. A new 90-mil EPDM membrane was installed and existing ballast moved onto it to 10-pounds-per-square-foot coverage.

As these professionals started to examine the older “new age” roofs, those whose first responsibility was doing what was best for the client saw greater opportunity than just a costly full-roof replacement. Although many roofs today still need to be fully removed, prudent professionals see other opportunities, such as the following:

ROOF RESTORATION
EPDM membrane ages with little change in physical characteristics as opposed to its built-up roofing predecessor; therefore, EPDM membranes often can be “restored” in lieu of removing and replacing the roof. (Studies to support the lack of change in EPDM’s physical characteristics while it ages include Gish, 1992; Trial, 2004; and ERA, 2010.)

Pages: 1 2

Water Is Construction’s Worst Enemy

I have a water phobia. When I was very young I fell into a pool and nearly drowned. Consequently, I never learned to swim out of sheer fear. Despite my attempts to avoid it, water continues to haunt me. (See an article I wrote about my Chicago condo’s construction defects for some background.) It’s ironic I now live along the nation’s southernmost glacial lake. I love the view from our home, but the lake’s recreational opportunities are lost on me.

To further substantiate my negative feelings toward water, 2015 was an especially wet year for the Midwest. In mid-December, my Iowa town received 5 inches of rain in a day and a half. Our basement—where my office is located—flooded (for the second time since August). My husband bought the house (which he planned to make his lifelong bachelor pad) knowing the basement might leak during heavy-rain events. He never planned to have anything down there. Then I came along.

As this issue was coming together—around the same time our basement was soaked—I read a line in “Tech Point” that really resonated with me: “… water is construction’s worst enemy, so when it goes where it shouldn’t, it’s causing damage—seen or unseen.” I shared that line, which was written by Armand T. Christopher Jr., AIA, with my husband. The next week we hired a basement waterproofing contractor to solve our ongoing water problems.

Christopher’s story likely will resonate with you, as well. He and his team had recently installed a PVC roof system on a high-profile government building in central New Jersey. Six months after the install, a three-day nor’easter exposed numerous leaks in the building, which the client thought were coming from the new roof. The ensuing “detective work” Christopher’s team completed was tedious but uncovered the cause of the leaks and made Christopher and his colleagues heroes.

Christopher points out a nice feature of the roof’s thermoplastic cap sheet is areas where water had pooled within the roof system were dried and resealed with heat-welded target patches. Thomas W. Hutchinson, AIA, FRCI, RRC, CSI, RRP, builds upon this idea in his “From the Hutchinson Files” article. Hutchinson notes today’s “new age” roofs may not require removing all system components during reroofing. Instead, it may be in the customer’s best interest to consider restoration; roof-cover removal, enhanced with additional insulation; using the existing roof membrane as a vapor retarder; or membrane removal before installation of a new roof cover.

My husband and I seem to have found the best solution to our basement water problems. Although we’re not looking forward to the construction ahead, we are excited about all the things we can do with a dry basement. Right now, we’re envisioning a mini spa in which we can relax after a stressful workday—another welcome upgrade my husband never imagined for his “bachelor pad”.

The Roof Cover: The Cap on the Roof System

For nearly two years in this magazine, I have been discussing the various components that make up a roof system: roof deck, substrate boards, vapor/air retarder, insulation and cover boards (see “More from Hutch”, page 3). Although each component delivers its own unique benefit to the system, they are intended to work together. When designing a roofing system, components cannot be evaluated solely on their own and consideration must be taken for a holistic view of the system; all components must work together synergistically for sustainable performance. Unfortunately, I often have seen that when components are not designed to work within the system unintended consequences occur, such as a premature roof system failure. A roof system’s strength is only as good as its weakest link. The roof cover is the last component in the design of a durable, sustainable roof system—defined previously as being of long-term performance, which is the essence of sustainability.

This ballasted 90-mil EPDM roof was designed for 50 years of service life. All the roof-system components were designed to complement each other. The author has designed numerous ballasted EPDM roofs that are still in place providing service.

PHOTO 1: This ballasted 90-mil EPDM roof was designed for 50 years of service life. All the roof-system components
were designed to complement each other. The author has designed numerous ballasted EPDM roofs that are still in place providing service.

The roof cover for this article is defined as the waterproofing membrane outboard of the roof deck and all other roof-system components. It protects the system components from the effects of climate, rooftop use, foot traffic, bird and insect infestation, and animal husbandry. Without it, there is no roof, no protection and no safety. When mankind moved from cave dwellings to the open, the first thing early humans learned to construct was basic roof-cover protection. Thus, roof covers have been in existence since man’s earliest built environment.

WHAT CONSTITUTES AN APPROPRIATE ROOF COVER?

There is no one roof cover that is appropriate for all conditions and climates. It cannot be codified or prescribed, as many are trying to do, and cannot be randomly selected. I, and numerous other consultants, earn a good living investigating roof failures that result from inappropriate roof-cover and system component selection.

There are several criteria for roof-cover selection, such as:

  • Compatibility with selected adhesives and the substrate below.
  • Climate and geographic factors: seacoast, open plains, hills, mountains, snow, ice, hail, rainfall intensity, as well as micro-climates.
  • Compatibility with the effluent coming out of rooftop exhausts.
  • Local building-code requirements, such as R-value, fire and wind requirements.
  • Local contractors knowledgeable and experienced in its installation.
  • Roof use: Will it be just a roof or have some other use, such as supporting daily foot traffic to examine ammonia lines or have fork lifts driven over it?
  • Building geometry: Can the selected roof cover be installed with success or does the building’s configuration work against you?
  • Building occupancy, relative humidity, interior temperature management, building envelope system, interior building pressure management.
  • Building structural systems that support the enclosure.
  • Interfaces with the adjacent building systems.
  • Environmental, energy conservation and related local code/jurisdictional factors.
  • Delivering on the expectations of the building owner: Is it a LEED building? Does he/she want to go above and beyond roof insulation thermal-value requirements to achieve even better energy savings? Is he/she going to sell the building in the near future?

ROOF-COVER TYPES

There are many types of roof-cover options for the designer. Wood, stone, asphalt, tile, metal, reed, thatch, skins, mud and concrete are all roof covers used around the world in steep-slope applications. This article will examine the low-slope materials.

The dominant roof covers in the low-slope roof market are:

    Thermoset: EPDM

  • Roof sheets joined via tape and adhesive
  • Installed: mechanically fastened, fully adhered or ballasted
  • Thermoplastic: TPO or PVC

  • Roof sheets joined via heat welding
  • Installed: mechanically fastened, fully adhered or plate-bonded (often referred to as the “RhinoBond System”)
  • Asphaltic: modified bitumen

  • Installed in hot asphalt, cold adhesive or torch application
  • EPDM (ETHYLENE PROPYLENE DIENE MONOMER)

    Fully adhered EPDM on this high school in the Chicago suburbs is placed over a cover board, which provides a high degree of protection from hail and foot traffic.

    PHOTO 2: Fully adhered EPDM on this high school in the Chicago suburbs is placed over a cover board, which provides a high degree of protection from hail and foot traffic.


    EPDM is produced in three thicknesses— 45, 60 and 90 mil—with and without reinforcing. It can be procured with a fleece backing in traditional black or with a white laminate on top. The lap seams are typically bonded with seam tape and primer.

    EPDM has a 40-year history of performance; I have 30-year-old EPDM roof systems that I have designed that are still in place and still performing. Available in large sheets—up to 50-feet wide and 200-feet long—with factory-applied seam tape, installation can be very efficient. Fleece-back membrane and 90-mil product have superior hail and puncture resistance. Historical concerns with EPDM lap-seam failure revolved around liquid- applied splice adhesive; with seam tape technology this concern is virtually moot. Non-reinforced ballasted and mechanically fastened EPDM roof membrane can be recycled.

    EPDM can be installed as a ballasted, mechanically fastened or fully adhered system (see photos 1, 2 and 3). In my opinion, ballasted systems offer the greatest sustainability and energy-conservation potential. The majority of systems being installed today are fully adhered. Ballast lost its popularity when wind codes raised the concern of ballast coming off the roof in high-wind events. However, Clinton, Ohio-based RICOWI has observed through inspection that ballasted roofs performed well even in hurricane-prone locations when properly designed (see ANSI-SPRI RP4).

    PHOTOS: HUTCHINSON DESIGN GROUP LTD

    Pages: 1 2 3

Attention Roof System Designers: Numerous Roof Components Work Together to Affect a Building

There has been a great deal of opinion expressed in the past 15 years related to the roof cover(s), or the top surface of a roof system, such as “it can save you energy” and “it will reduce urban heat islands”. These opinions consequently have resulted in standards and code revisions that have had an extraordinary effect on the roofing industry.

The building type should influence the type of roof system designed. Some spaces, like this steel plant, are unconditioned, so insulation in the roof system is not desired.

The building type should influence the type of roof system designed. Some spaces, like this steel plant, are unconditioned, so insulation in the roof system is not desired.

Let’s say it loud and clear, “A single component, does not a roof make!”. Roofs are systems, composed of numerous components that work and interact together to affect the building in question. Regardless of your concern or goal—energy performance, urban heat-island minimization, long-term service life (in my opinion, the essence of sustainability) or protection from the elements—the performance is the result of an assembled set of roof system components.

Roof System Components

Energy conservation is an often-discussed potential of roofs, but many seem to think it is the result of only the roof-cover color. I think not. Energy performance is the result of many factors, including but not limited to:

Building use: Is the building an office, school, hospital, warehouse, fabrication facility, etc.? Each type of building use places different requirements on the roof system.

Spatial use and function be low the roof deck: It is not uncommon in urban areas to have mechanical rooms or interstitial spaces below the roof—spaces that require little to no heating or cooling. These spaces are typically unconditioned and unoccupied and receive no material benefit from the roof system in regard to energy savings.

Roof-deck type: The type of roof deck—whether steel; cast-in-place, precast and post-tensioned concrete; gypsum; cementitious wood fiber; or (don’t kill the messenger) plywood, which is a West Coast anomaly—affects air and moisture transport toward the exterior, as well as the type of roof system.

Roof-to-wall transition(s): The transition of the roofing to walls often results in unresolved design issues, as well as cavities that allow moisture and vapor transport.

Meanwhile others, like this indoor pool, require extreme care in design and should include a vapor retarder and insulation.

Meanwhile others, like this indoor pool, require extreme care in design and
should include a vapor retarder and insulation.

Roof air and/or vapor barrier: Its integration into the wall air barrier is very important. Failure to tie the two together creates a breach in the barrier.

Substrate board: Steel roof decks often require a substrate board to support the air and vapor barrier membranes. The substrate board also can be the first layer of the roof system to provide wind-uplift resistance.

Insulation type: Each insulation type—whether polyisocyanurate, expanded polystyrene, extruded polystyrene, wood fiber, foam glass or mineral wool—has differing R-values, some of which drop with time. Many insulation types have differing facer options and densities.

The number of insulation layers: This is very important! A single layer of insulation results in a high level of energy loss; 7 percent is the industry standard. When installing multiple layers of insulation, the joints should be offset from layer to layer to avoid vapor movement and thermal shorts.

Sealing: Voids between rooftop penetrations, adjacent board and the roof-edge perimeters can create large avenues for heat loss.

Pages: 1 2