Project Profiles: Education Facilities

Maury Hall, U.S. Naval Academy, Annapolis, Md.

TEAM

Roofing Contractor: Wagner Roofing, Hyattsville, Md.
General Contractor: C.E.R. Inc., Baltimore, (410) 247-9096

The project included 34 dormers that feature double-lock standing-seam copper and fascia metal.

The project included 34 dormers that feature double-lock standing-seam copper and fascia metal.

ROOF MATERIALS

Wagner Roofing was awarded the complete replacement of all roof systems. These included an upper double-lock standing-seam copper roof system, a bullnose copper cornice transition, slate mansard, 34 dormers with double-lock standing-seam copper and fascia metal, eight copper hip metal caps and a continuous built-in gutter with decorative copper fascia. Each of the dormers also had a copper window well.

The upper standing-seam roof was removed and replaced with 24-inch-wide, 20-ounce copper coil rollformed into 1-inch-high by 21-inch-wide continuous standing-seam panels that matched the original profile. The eave bullnose, which also served as the mansard flashing, was removed and returned to Wagner Roofing’s shop where it was replicated to match the exact size and profile.

The 34 dormer roofs were replaced with 20-inch-wide, 20-ounce copper coil formed into 1-inch-high by 17-inch- wide continuous standing-seam panels. The decorative ornate fascia of the dormers was carefully removed and Wagner’s skilled craftsmen used it as a template to develop the new two-piece copper cornice to which the roof panels locked. The cheeks and face of the dormers were also re-clad with custom-fabricated 20-ounce copper.

The oversized built-in-gutter at the base of the slate mansard was removed and replaced with a new 20-ounce copper liner custom-formed and soldered onsite. The replacement included a specialty “bull-nosed” drip edge at the base of the slate and an ornate, custom-formed fascia on the exterior of the built-in gutter. The decorative copper fascia included 85 “hubcaps”, 152 “half wheels” and 14 decorative pressed-copper miters. The original hubcap and half-wheel ornaments were broken down and patterns were replicated. Each ornamental piece was hand assembled from a pattern of 14 individual pieces of 20-ounce copper before being installed at their precise original location on the new fascia. The miters were made by six different molds, taken from the original worn pieces, to stamp the design into 20-ounce sheet copper.

In all, more than 43,000 pounds of 20-ounce copper was used on the project.

Copper Manufacturer: Revere Copper Products

ROOF REPORT

Maury Hall was built in 1907 and was designed by Ernest Flagg. Flagg designed many of the buildings at the U.S. Naval Academy, including the Chapel, Bancroft Hall, Mahan Hall, the superintendent’s residence and Sampson Hall. His career was largely influenced by his studies at École des Beaux-Arts, Paris. Examples of Flagg’s Beaux-Arts influence can be found in the decorative copper adorning the built-in gutter on building designs.

Maury Hall currently houses the departments of Weapons and Systems Engineering and Electrical Engineering. The building sits in a courtyard connected to Mahan Hall and across from its design twin, Sampson Hall.

PHOTO: Joe Guido

Pages: 1 2 3 4 5 6 7 8 9 10 11 12

Spray Polyurethane Foam Locks a Roof into Place

Lapolla Industries Inc. has made available FOAM-LOK 2800-4G Spray Polyurethane Foam for roofing.

Lapolla Industries Inc. has made available FOAM-LOK 2800-4G Spray Polyurethane Foam for roofing.

Lapolla Industries Inc. has made available FOAM-LOK 2800-4G Spray Polyurethane Foam for roofing. The fourth-generation SPF eliminates ozone depletion potential and reduces global warming potential. The rigid, closed-cell SPF may be applied over most new or retrofit roofing substrates. FOAM-LOK locks every portion of the roof into place, creating a monolithic membrane and eliminating the need for mechanical fasteners. The product seals the envelope, which minimizes the escape of conditioned air and dramatically reduces the structure’s energy consumption for heating and cooling, in turn reducing energy costs over the life of the roof. The low-maintenance material also resists wind uplift and acts as a waterproofing solution.

Spray Polyurethane Foam and Photovoltaic Roofing Systems

Spray polyurethane foam and photovoltaic systems are increasingly utilized together as
a joint solution for energy savings. With the continued push toward sustainability and growing
movements, like net-zero-energy construction, SPF and PV systems are a logical combined solution for the generation of renewable energy, the conservation of heating and cooling energy, and the elimination of the structure’s dependence on fossil-fuel-consuming electricity sources. Regardless of whether net-zero energy is the end goal, SPF and PV combined in roofing can be quite effective for many structures. Here are some considerations when looking to join these two powerful systems on the roof of a building.

ROOFTOP PV INSTALLATION TYPES FOR USE WITH SPF

Installation of PV systems on SPF roofing will inevitably create additional foot traffic. It is important to protect heavily trafficked areas with additional coating and granules or walk pads.

Installation of PV systems on SPF roofing will inevitably create additional foot traffic. It is important to protect heavily trafficked areas with additional coating and granules or walk pads.


Rooftop PV systems can vary significantly in size. Large-footprint buildings can employ PV systems rated from 50 kilowatts to 1,000 kW or larger while residential rooftop PV systems are commonly 3 kW to 5 kW.

Rooftop PV systems may be installed on racks or adhered directly to the roof surface. When looking to combine PV with SPF, it is generally not advised to adhere or place the PV panels directly onto the roof surface. Solar heat and water can accumulate between the PV and roof coating which could negatively impact coating performance. Moreover, panels applied directly to a low-slope roof will not be properly aligned with the sun to achieve optimal performance.

Non-penetrating rack systems may be placed directly on a rooftop and held in place with ballast. Racks may also be installed with penetrating supports that require flashings. Each type provides advantages and disadvantages. For example, ballasted racks may block water flow and affect drainage while penetrations require leak- and maintenance-prone flashings. SPF is unique in that it easily self-flashes around penetrating supports.

PV EXPLANATION

PV cells are the basic unit used to convert light to electricity. Many PV cells are bundled together to make a PV panel, or module. PV panels are grouped electrically to create a PV string. Depending on the system size, two or more strings are combined to create a PV array.

The dominant type of PV panel used with SPF roofing is cSi, or crystalline silicon. cSi is a typically rigid panel with a glass and metal frame and may be applied, unlike other dominant PV panel types, via rack installation methods.

A PV system includes many components in addition to the panels. Components include racks, rails, rooftop attachment devices, grounding systems, wiring and wiring harnesses, combiner boxes, inverter(s) and connection to the main electrical panel. Components may also include control modules and storage batteries for off-grid PV system installations.

ELECTRICAL SAFETY

Photovoltaic panels must be handled and maintained with caution. Electricity is produced when a single panel is exposed to light; however, because a panel is not part of a circuit, that electricity will not flow until the circuit is complete. A worker may complete the circuit by connecting the two wires from the backside of a PV panel.

When maintaining a PV system, it may become necessary at some point to disconnect or remove an individual panel from a string or an array. The whole system must be shutdown properly as a precautionary measure to prevent shocks from occurring to workers and arcing between electrical connections. This “shutdown” procedure must be followed with precision as part of a lock-out/tag-out program. This procedure is provided by the inverter manufacturer. Under no circumstances should SPF contractors ever disconnect or decommission a PV panel or system unless they are trained and qualified to do so.

HEAT BUILDUP

Photovoltaic panels convert approximately 15 to 20 percent of light to electricity, leaving the remaining unconverted energy to be released as heat. Additionally, PV panels are more effective when their temperature drops. It is for these reasons that the majority of rooftop PV systems are installed to encourage airflow under panels, which reduces the temperature of the panels, improves conversion efficiency and releases heat effectively. Photovoltaic panels installed 4 to 5 inches above the roof will not change the temperature of the roof and, instead, provide shade to the surface of that roof. This additional shade may extend the life of SPF roof coatings.

LOAD

PV panels add weight to a rooftop and this must be factored into the design and installation. Existing structures should be analyzed by a structural engineer to determine if the additional weight of the PV system is acceptable.

Rack-mounted arrays with penetrating attachments are fairly lightweight at 2 to 3 pounds per square foot, and ballasted arrays add 4 to 6 pounds per square foot. However, with the latter, more ballast is utilized at the perimeters and corners of a PV array. Thus, localized loading from ballast may reach as high as 12 to 17 pounds per square foot, which must be considered. Most SPF roofing systems have a compressive strength of 40 to 60 psi.

Pages: 1 2

Complete Cool Roof System Extends the Service Life of New and Existing Roofs

Rhino Linings released a complete cool roof system engineered to improve building energy efficiency while extending the service life of new and existing roofs.

Rhino Linings released a complete cool roof system engineered to improve building energy efficiency while extending the service life of new and existing roofs.

Rhino Linings Corp., a manufacturer and distributor of spray-on protective linings, coatings and foam, released a complete cool roof system engineered to improve building energy efficiency while extending the service life of new and existing roofs.

The DuraTite spray polyurethane foam (SPF) roofing system holds a UL 790 Class A fire rating and is designed to provide a lightweight insulation system over various roof constructions and configurations. Unlike traditional roofing methods, DuraTite SPF roofing system offers a high R-value for superior thermal insulation, covers complex geometrical shapes and protrusions and applies directly to existing substrates in new and retrofit applications.

In addition to DuraTite SPF roofing system’s high-performance, it also offers significant life-cycle cost savings. An SPF roofing system is seamless and requires little-to-no maintenance. Roofing topcoats, like DuraTite acrylic, silicone, urethane and polyurea coatings may be reapplied numerous times, increasing the life of the roof.

The complete system combines spray foam with a full range of acrylic, silicone, urethane and polyurea coatings for a total roofing system that insulates, seals and protects. Products in this system include:

  • Acrylic Coatings — DuraTite 1065 and DuraTite 1070 single component, acrylic roof coatings demonstrate excellent adhesion to polyurethane foam, concrete, masonry, primed metal, primed wood and primed asphalt roofs. When applied at 12 DFT (dry film thickness) and fully cured, DuraTite 1065 and 1070 exhibit exceptional weatherability and resistance.
  • Silicone Coatings — DuraTite 1380 and DuraTite 1395 are high-solid, single-component, silicone coatings with low VOCs and excellent chemical and abrasion resistance. When applied, DuraTite 1380 and 1395 form a breathable membrane, making it an ideal choice for new and recoat applications over metals, single-ply membranes, masonry block, concrete and spray polyurethane foam roofing systems where moisture may be present.
  • Urethane Coatings — DuraTite 1175 and DuraTite 1285 are high-solid, single-component urethane coatings that can be applied in a wide range of ambient temperatures and humidity levels. Both offer superior impact and crack resistance. DuraTite 1285 also offers enhanced UV stability.
  • Polyurea Coatings — DuraTite 2185 is a fast set, rapid cure, 100 percent solids, plural component aluminized polyurea spray-applied lining offers enhanced UV stability and remains flexible in cold temperatures. DuraTite 2185 demonstrates exceptional adhesion to spray polyurethane foam, concrete, bitumen and asphaltic roofing felts, steel, wood and most substrates in extreme cold and warm climates.
  • Spray Polyurethane Foam — DuraTite CC 2.5, DuraTite 2.8 and DuraTite 3.0 closed-cell polyurethane foam products’ lightweight, seamless construction ensures leak-proof performance and allows for value engineering labor and material cost savings.

DuraTite SPF roofing system guide specifications and five-, 10-, 15- and 20-year warranties are available for use on roof substrates, such as metal, built-up roof membrane, single ply, wood recoat and concrete.

The Spray Polyurethane Foam Alliance Recognizes CertainTeed Insulation Products

Thanks to an accreditation awarded by the Spray Polyurethane Foam Alliance Professional Certification Program (SPFA PCP), contractors can be confident that CertainTeed operates using the industry’s best practices for world-class spray foam insulation products, technical knowledge and training. CertainTeed is one of the first supplier companies in the spray polyurethane foam (SPF) industry to meet the rigorous demands of the respected professional organization’s certification program.

“We believe excellence in manufacturing the highest quality spray polyurethane foam products is just part of the equation,” says Ken Forsythe, manager of product marketing for CertainTeed Insulation. “Education and proper installation of building materials have always been top priorities with CertainTeed. SPF insulation is one of the more technical products to master, and our SPFA PCP supplier accreditation shows our dedication to partnering with building professionals well after the product leaves the factory.”

The SPFA PCP is an internationally recognized program built for those involved in the installation of spray polyurethane foam. Covering roofing and insulation applications, the program advocates industry best practices and safety. The new SPF Supplier Company Accreditation category is designed to increase the scope of the program, to include additional organizations and individuals which are key to the SPF supply chain, and to provide further distinction for those companies that invest in their people and customers.

The standards-driven program is ISO 17024 compliant and was developed by committees of industry stakeholders in collaboration with the Occupational Safety and Health Administration (OSHA), The National Institute for Occupational Safety and Health (NIOSH), and the U.S. Environmental Protection Agency (EPA), in addition to other federal agencies and external stakeholders. It is offered both domestically and internationally.

“This prestigious achievement signifies CertainTeed’s adherence and commitment to the SPF industry’s best practices,” says Kelly Cook Marcavage, certification director for SPFA PCP. “It is an honor to work with such a dedicated company who shares our demand for the highest of standards and utmost professionalism.”

As part of the accreditation process, select CertainTeed personnel were required to become certified as SPF Insulation Supplier Representatives through the SPFA PCP. Criteria also included supplier offered training programs for contractors and best practices/risk management program verification.

Spray Polyurethane Foam: A Key Component to Any Net Zero Solution

SPF has the ability to insulate, air and water seal, as well as control moisture throughout the structure, acting as a single-source solution, reducing the need for multiple products.

SPF has the ability to insulate, air and water seal, as well as control moisture throughout the structure, acting as a single-source solution, reducing the need for multiple products.

In July 2014, California initiated the revision process to the 2016 version of Title 24, California’s building energy efficiency codes, which are designed to move the state’s residential and commercial buildings toward zero net energy (ZNE). All new residential construction is to be ZNE by 2020, and all new commercial buildings are to achieve ZNE by 2030. While aggressive, these goals are achievable with the right design implementation and accessibility to proper building materials.

As one of the world’s most influential economies, the state of California has demonstrated its power in leading the other 49 states in the implementation of progressive initiatives. California traditionally takes an environmental stance with a history of enforcing regulations designed to protect the physical environment and health of the state’s residents. These efforts often result in national trending with other states and municipalities following suit with similar regulations. It is widely anticipated a similar phenomenon will occur with ZNE goals.

The design of a ZNE building focuses on the reduction of energy consumption and on the generation of the structure’s own renewable energy (such as via solar panel solutions). Long-term ZNE begins with a quality building enclosure. High-performance attics and wall systems are a key focus of 2016 Title 24 as they make a significant impact in the reduction of peak cooling demand in structures.

SPF may be installed in a continuous layer, eliminating thermal bypasses, and boasts one of the highest R-values of all insulation options.

SPF may be installed in a continuous layer, eliminating thermal bypasses, and boasts one of the highest R-values of all insulation options.

Because of spray polyurethane foam’s unique attributes, the material is widely recognized as an optimal solution for unvented attics, as well as for roofing, walls and ceilings. SPF has the ability to insulate, air and water seal, as well as control moisture throughout the structure, acting as a single-source solution, reducing the need for multiple products.

Energy loss may occur at various points throughout the roof, walls and ceiling via air leakage. Thus the air-sealing ability of SPF is extremely beneficial when trying to improve energy efficiency.

In roofing, SPF acts as a protective roofing solution and as an insulator.

In roofing, SPF acts as a protective roofing solution and as an insulator.

As a thermal insulator, SPF forms in place and fully adheres, almost completely eliminating the cracks and gaps that allow escape of conditioned air. It may be installed in a continuous layer, eliminating thermal bypasses typically found with cavity insulations and boasts one of the highest R-values of all insulation options.

In roofing, SPF acts as a protective roofing solution and as an insulator. The effectiveness of insulation is measured through moisture control, air leakage, health, safety, durability, comfort and energy efficiency factors, and SPF scores exceptional marks in all.

These combined characteristics are integral to SPF’s ability to contribute to total ZNE solutions—solutions, which will become increasingly necessary as the net zero revolution takes hold across the U.S.

Spray Polyurethane Foam Has Structure-strengthening and Energy-efficiency Capabilities

A high-performance building material, spray polyurethane foam (SPF) is widely used as an effective, lasting roofing solution. With positive benefits, including versatility, thermal insulation, resistance to inclement weather cycling and storms, strengthening of the building envelope, long life span and durability, spray foam has enjoyed increased use among builders and roofing contractors alike.

A roof’s primary purpose is to protect the structure underneath it. As a roofing material, closed-cell SPF acts as a protective roofing mechanism and a thermal insulator. The lightweight material is ideal as a roofing solution when:

 As a roofing material, closed-cell SPF acts as a protective roofing mechanism and a thermal insulator.

As a roofing material, closed-cell SPF acts as a protective roofing mechanism and a thermal insulator.

  • the roof substrate has many penetrations.
  • the roof deck is an unusual shape or configuration.
  • the roof is being applied to a structure located in a severe-weather environment.
  • a lightweight option is needed.
  • a slope application is preferred to provide extra drainage capabilities.
  • keeping the existing roof cover is desired.

STRENGTH AND DURABILITY

SPF is considered a highly durable building material. The physical properties of the foam change little with time, accounting for a life span up to 30 years with regular care and maintenance. SPF roofing systems also strengthen the roof in multiple ways. Roofing spray foams possess a compressive strength of 40 to more than 60 pounds per inch. Spray foam’s adhesion strengthening capabilities are key, especially in locations where severe weather cycling, storms, wind, hail and other conditions are prevalent and commonly cause structure damage. Coastal and hurricane-prone regions are prime examples.

When applied to the interior side of a roof, closed-cell SPF can increase a building’s resistance to wind uplift during severe storms. When SPF is applied to built-up roofing and metal substrates, it increases resistance to wind uplift even further. A study conducted by the University of Florida, Gainesville, in 2007 found that applying closed-cell spray foam under a roof deck provides up to three times the resistance to wind uplift for wood roof sheathing panels when compared to a conventionally fastened roof.

Spray foam is a good solution for unusual configurations and areas with many penetrations.

Spray foam is a good solution for unusual configurations and areas with many penetrations.

Spray foam also is resistant to progressive peeling failure. Caused by wind, peeling happens at the roof’s edges when wind pulls flashings and copings away from their installed positions. Peeling looks like a tin can after it has been cut around the perimeter. When this happens, a chain reaction may occur and lead to catastrophic building failure. After the roof membrane, panels or tiles pull away, the board-stock insulation is exposed, often with less resistance to the lateral and uplift wind forces. Then the sheathing below and the substructure are subject to movement and wind or water damage, potentially leaving the entire building interior underneath open and vulnerable. SPF roofing is continuous, so it provides a water-resistant layer that is well adhered to the substrate.

When the Gaithersburg, Md.-based National Institute of Standards and Technology examined roofs following Hurricane Katrina, it found buildings with spray-foam roofs performed rather well without blow-off of the SPF or damage to flashings. The 2006 “Performance of Physical Structures in Hurricane Katrina and Hurricane Rita: A Reconnaissance Report” found that only one of the examined SPF roofs incurred notable damage, and that damage was confined to only 1 percent of the total roof system. The report concluded spray foam kept the roofs intact, prevented moisture from entering the buildings, and protected the structures from hail and debris.

Hurricane Katrina played a significant role in one of the largest reroofing projects ever on one of the largest metal-framed domed structures in the world: the Superdome in New Orleans. Katrina destroyed the dome’s second roof; the structure’s original roof was constructed with polyisocyanurate foam covered with a fluid-applied elastomeric coating but was replaced in 1989 with a single-ply EPDM roofing system. After the damages suffered during Katrina, the EPDM roof system was replaced with a spray foam roof system.

Pages: 1 2

Spray Polyurethane Foam Alliance Completes ISO-compliant Life Cycle Assessments

The Spray Polyurethane Foam Alliance (SPFA), the educational and technical resource to the spray polyurethane foam industry, has announced the completion of an ISO-compliant Life Cycle Assessment (LCA) for three generic formulations that include open-cell, closed-cell and roofing foams. The Life Cycle Assessment is published and available as a free download from the SPFA website. Using the results of the LCA, the SPFA has collaborated with UL Environments to develop an Environmental Product Declaration (EPD), which allows spray polyurethane foam contractors to assist sustainable building designers in obtaining proper credit among leading sustainable building programs for spray foam insulation and roofing materials use.

An EPD is a third-party reviewed document that summarizes the results of the more detailed LCA. EPDs are required by design professionals to satisfy requirements of many sustainable building programs, such as the US Green Building Council’s LEED v4 program, the International Green Construction Code and GreenGlobes, to name a few. For example, the current LEED v4 program enables a building design to earn 1/4 point for using products that have an LCA; 1/2 point for products with a generic EPD (such as the one from SPFA), and 1 point for products using a product-specific EPD from a material supplier.

SPF contractors may now provide copies of the generic SPFA EPD to sustainable building designers to assure proper credit for SPF insulation and roofing materials. The EPD can also be used as general supporting information for customers wanting to use ‘green’ products. The SPFA EPD and related Transparency Briefs for each foam class are now available at no charge from the UL Environments website.