Owens Corning Enclosure Solutions Are Engineered to Exceed Thermal Standards

Owens Corning Insulating Systems launches Owens Corning Enclosure Solutions that are engineered to exceed standards for thermal, acoustical and sustainable performance across walls, below grade and roofing applications.

The new product launch represents the first of many wall, below-grade and roofing applications the company plans to introduce. These solutions feature category-leading components from several manufacturers, including Owens Corning, that are tested to perform together in different wall assemblies.

“Owens Corning Enclosure Solutions are designed with flexible options that deliver confidence, convenience and choice to architects,” said Todd Fister, vice president of strategic marketing, Insulation, Owens Corning. “As a leading solutions provider, we continue to help architects efficiently address the ever changing dynamics in the commercial market using proven, reliable materials in innovative configurations.”

The wide range of Owens Corning Enclosure Solutions options allow architects to customize components for each project. With the added flexibility that comes from working with Owens Corning Enclosure Solutions, commercial architects can more efficiently and accurately meet the performance demands of their projects.

For product information and to access Owens Corning educational resources, visit OCBuildingSpec.com.

Roof Tiles Are Embedded with Solar Cells

Power Shield Inc. has introduced roof tiles that have solar cells embedded into them.

Power Shield Inc. has introduced roof tiles that have solar cells embedded into them.

Power Shield Inc. has introduced roof tiles that have solar cells embedded into them. The tiles are designed to cover the whole roof. The Power Shield roof system features a cool roof coating, above-deck ventilation, and is made from recycled and non-combustible, lightweight steel. Energy is produced through the 16 watts of power per solar tile. Building-envelope thermal performance is improved through:

  • Cool roof coatings on tile keep it cool and improve energy production. The cool roof coating has high emissivity on the sun side to allow heat to be radiated out and low emissivity underneath, making the tiles a radiant barrier.
  • The efficient above-sheathing ventilation on the tile system provides a chimney effect as warm air flows between the tiles and the roof deck and out from the building. In winter, the air gap between the tiles and roof deck are insulating, reducing the heat transfer out of the attic.

ARMA, ERA and PIMA Research Advanced Roof Systems in Northern Climates

A coalition of trade groups is funding a research project about advanced roofing systems that were installed on an upstate New York correctional facility to evaluate the benefits of thermal insulation and cool roofing in Northern climates.

The Asphalt Roofing Manufacturers Association (ARMA), Washington, D.C.; EPDM Roofing Association (ERA), Washington; and the Polyisocyanurate Insulation Manufacturers Association (PIMA), Bethesda, Md., are sponsoring continued analysis of a reroofing project at the Onondaga County Correctional Facility, Jamesville, N.Y. The Onondaga County Department of Facilities Management identified a need to study building energy use and stormwater runoff from roof systems. Temperature and rain data from the project, which includes vegetative roofing, increased insulation levels and “cool” roofs, will provide information about building performance and roof covering selection.

“ARMA members promote a balanced approach to roofing performance, especially when it comes to saving building energy,” says Reed Hitchcock, ARMA’s executive vice president. “Using a whole-building approach, where roofing reflectivity, insulation levels and other design elements are considered in the decision-making process, will help ensure the right system is selected; this project can only help with that decision.”

When the correctional facility was due for a major reroofing project in 2009, Onondaga County saw a unique opportunity to evaluate the water-retention and energy-efficiency performance for a variety of different roof covering assemblies. The project also offered valuable information that could be used to identify the best options for future reroof projects across the county’s entire building inventory.

The county worked with Ashley-McGraw Architects, Syracuse, N.Y., and CDH Energy, Cazenovia, N.Y., to design and install a field monitoring system to collect data on thermal performance, weather conditions and roof runoff from four buildings at the Jamesville facility. CDH Energy released a report in October 2011 that made recommendations on roof covering selection.

Hugh Henderson, P.E., CDH Energy, remarked the original report laid the groundwork for future roofing projects in Onondaga County. “The use of vegetative roof systems as a stormwater control mechanism was the most important takeaway from the first years of the project,” he explains. “Continuing the project will provide a better evaluation of cool roof and insulation products as part of roof designs in colder climates.”

With the instrumentation still in place, it was a simple decision to continue evaluating the roof coverings over a longer time period to better see how roof coverings interact with weather conditions. Of particular interest is the effect of accumulated snow on roofs that may affect the buildings’ thermal performance.

“Roof insulation is an integral part of the design strategy for a building’s energy-efficiency footprint, and this study will help building owners, contractors and architects assess a roof’s performance from a broader basis and ensure the best energy efficient components are used,” adds Jared Blum, PIMA president.

The Onondaga County reroofing project includes an analysis of the comparison of cool roof technologies, consisting of reflective roof surfaces and high-performing well-insulated roof covering assemblies. “Our members produce reflective and absorptive roof coverings; this study will provide meaningful data that can help designers select the right products for their particular project, regardless of where in the country the roof will be installed,” notes Ellen Thorp, ERA’s associate executive director.

The project is expected to run through 2015.

Vapor Retarder, Air Barrier Contributes to Thermal and Waterproofing Performance

Duro-Last Inc. has added to its Duro-Guard product line with Duro-Guard SOPRAVAP'R, a vapor retarder and air barrier membrane.

Duro-Last Inc. has added to its Duro-Guard product line with Duro-Guard SOPRAVAP’R, a vapor retarder and air barrier membrane.

Duro-Last Inc. has added to its Duro-Guard product line with Duro-Guard SOPRAVAP’R, a vapor retarder and air barrier membrane. This product is composed of a self-adhesive SBS modified bitumen with a polyethylene facer on the top surface and a silicone release film on bottom. Duro-Guard SOPRAVAP’R addresses the movement of air in roof assemblies as required in the 2012 International Energy Code.

When correctly engineered into a roof assembly, it will contribute to long-lasting thermal and waterproofing performance in all climate zones for all colors including white membranes provided by Duro-Last. Duro-Guard SOPRAVAP’R can also be used as a temporary roof in new construction or roof tear offs. Duro-Guard SOPRAVAP’R can be installed on steel, plywood, gypsum, concrete board, asphalt panel or concrete deck. The addition of the Duro-Guard SOPRAVAP’R provides Duro-Last customers with another Edge-to-Edge & Deck-to-Sky solution.

Roof Decks: Don’t Underestimate the Backbone of the Roof System

NOTE: This article is intended to provide general information while conveying the importance of the roof deck as an integral part of a roof system. Additional information about specific effects and concerns in regard to roofing can be found in The NRCA Roofing and Waterproofing Manual and various roof-cover manufacturers’ design guides.

Wood plank decks can provide a dramatic exposed roof deck.

Wood plank decks can provide a dramatic exposed roof deck.

The roof deck is the backbone and an integral component of all roofing systems. Its main function is to provide structural support for the roof system and, therefore, is a building element that needs to be designed by a licensed design professional because proper support of the roofing above is critical to the roof system’s success.

Roof decks also add thermal performance and fire resistance and ratings, provide slope for drainage and enhance wind-uplift performance. They must accommodate building movement and often determine the attachment method of the vapor retarder, insulation and membrane.

Roof Deck Types

There are many types of roof decks being installed today:

  • Steel
  • Precast concrete panel
  • Structural concrete
  • Cementitious wood fiber
  • Wood planking
  • Plywood/OSB
  • Poured gypsum

Some decks are covered with topping fills that become the base for the roof system and may also be an integral structural component:

  • Concrete
  • Lightweight insulation concrete topping
  • Lightweight aggregate concrete topping

Other deck toppings are available, such as poured gypsum and lightweight concrete with integral insulation, but these are considered substrate covers and not roof decks.

The most prevalent roof deck in the U.S. for commercial buildings is steel. On the West Coast, plywood/OSB is very popular. In addition to the roof decks already mentioned, in the course of roof-replacement work the designer may come in contact with the following:

While the “plate” test is not a preferred method, it can quickly and inexpensively give an indication of retained moisture in lightweight aggregate concrete roof deck covers.

While the “plate” test is not a preferred method, it can quickly and inexpensively
give an indication of retained moisture in lightweight aggregate
concrete roof deck covers.

  • Book tile
  • Lightweight precast concrete planks
  • Precast gypsum planks
  • Transite

Collaboration with the Structural Engineer

Because a roof deck is the foundation for the roof system, the designer needs to coordinate the roof system design requirements for the roof deck with the structural engineer to ensure the performance of the roof system. For example, the roof deck may need to extend to the roof edge. In this example, the roof deck may not need to extend to the roof edge for structural concerns but is needed to support the roof system; the roof designer must address this. If the roof deck is structurally sloped, the designer and engineer must determine whether the low point is a potential drain location. Are there steel beams in the way of the drain location? The roof deck must be attached to the structure to prevent uplift. And the designer and engineer must determine what the deflection of the roof-deck span may be between structural supports. For example, steel deck is sometimes installed with spans of 7 feet between joists and flexes (deflects) under foot traffic. This typically is not a good condition onto which a ridged roof system, such as a bituminous one, should be installed. It cannot be expected to accommodate such deflection. PHOTOS: Hutchinson Design Group Ltd. [Read more…]

Rooftop Alterations, Like Skylights and Roof Monitors, Can Drive Building Value and Performance

Rooftops are an immensely underutilized resource for optimizing building performance. Rooftop strategies can include painting the roof white or installing a solar reflective “cool roof” to reduce summer cooling loads; covering the roof with vegetation to improve insulation, reduce storm-water runoff and provide community spaces; and mounting solar photovoltaic or solar hot-water panels to reduce utility bills.

The multiple functions of rooftop monitors. RENDERING: FCGA Architects

The multiple functions of rooftop monitors. RENDERING: FCGA Architects

Adding daylighting and ventilation through skylights and roof monitors is a strategy with growing popularity and potential. Common sense might lead us to believe that penetrating the roof with skylights and monitors could compromise a building’s insulation and thermal performance. However, with the availability of advanced products, such as glazing, suspended film and high-performance sealants, well-designed and constructed rooftop penetrations can successfully lower energy costs and improve occupant comfort and health.

Rooftop prescriptions vary for every individual project, and a variety of factors must be considered before proceeding with construction. For example, rooftop penetrations will primarily only affect the floor directly beneath the rooftop, so single-story buildings or multistory buildings with a central atrium are ideal. When further determining which types of projects would benefit from roof penetrations, the design team must perform thorough climatic analysis, examine the existing infrastructure and occupancy conditions, and weigh all variables through cost balancing. Before diving deep into analysis, it’s important to understand different types of rooftop penetrations in this capacity and how their design and operational synergies can enhance the value and performance of a building.

Design Synergies

Traditional skylights, tubular skylights and roof monitors are the main types of rooftop daylighting/ventilation penetrations and should be considered individually because of their varying benefits. Traditional skylights offer natural daylight, which can improve the health and productivity of building occupants. Tubular skylights capture sunlight from a small, clear dome on the roof; pass the light through a highly reflective tube; and diffuse the light through a lens into the building. Because of their high efficacy and smaller penetration area, tubular skylights have better thermal performance and are more suitable for harsher climates than traditional skylights.

Roof monitors are vertical fenestrations built into raised structures atop the roof. If the monitors are operational, they contribute exponential building-performance enhancements beyond the other penetration types, including stack-effect ventilation. The figure above depicts the many functions of roof monitors: natural daylighting, ventilation, passive heating and cooling, glare reduction and structural support for rooftop solar-power systems.

As with skylights, roof monitors help disperse natural daylight more evenly and completely throughout a room than windows on the side of a building. When paired with thermal mass, such as concrete or water, vertical glazing on the roof helps capture heat from the sun to offset the building’s heating load.

Glare presents a big problem for worker productivity in buildings; careful design of roof monitors and ceiling systems can help distribute the light and reduce contrast glare. Finally, monitors can be topped with angled roofing that matches the optimal sun exposure angle for solar panels mounted atop.

Pages: 1 2 3