RICOWI Provides Unbiased Research on Recent Hail Damage

Each time weather reports and news stories warn of impending heavy rains and hail, the Hail Investigation Program (HIP) Committee of the Roofing Industry Committee on Weather Issues (RICOWI) Inc., Clinton, Ohio, begins a process to determine whether the hail damage is sufficient to meet the HIP requirements for deployment of volunteer research teams.

Before the daily assignments began, the volunteers reviewed the various research requirements, met their team members and learned their responsibilities.

Before the daily assignments began, the volunteers reviewed the various research requirements, met their team members and learned their responsibilities.

Mobilization criteria is met when “An event is identified as a hailstorm with hail stones greater than 1 1/2 inches in diameter causing significant damage covering an area of 5 square miles or more on one of the target- ed areas.” Once a storm that meets the criteria has been confirmed and meteorological data and local input have been obtained by HIP, a conference call with RICOWI’s Executive Committee is held to discuss HIP’s recommendation and review information. The Executive Committee decides whether to deploy.

On April 11, 2016, the hailstorm that damaged the Dallas/Fort Worth metroplex met the requirements for mobilization.

RESEARCH TEAMS AND BUILDINGS

Volunteer recruitment is an ongoing process throughout the year. RICOWI members are encouraged to volunteer as a deployment team member by completing forms online or at HIP committee meetings held twice a year in conjunction with RICOWI seminars and meetings.

Once a deployment is called, an email is sent to RICOWI members to alert the volunteers and encourage new volunteers. RICOWI sponsoring organizations also promote the investigation to their memberships. Volunteers are a mixture of new and returning personnel.

On May 2, 2016, 30 industry professionals traveled from across the U.S. to assemble in Texas. These volunteers were alerted to bring their trucks, ladders and safety equipment. To provide an impartial review, 10 teams of three volunteers were balanced with roofing material representatives, roofing consultants or engineers, meteorologists, contractors and researchers. Team members volunteered to be their team’s photographer, data collector or team leader.

When the deployment was called, press releases were sent to various media in the Dallas/Fort Worth area to alert local companies and homeowners of the research investigation. RICOWI staff began making calls immediately to the local area’s government officials to seek approval for the investigation teams to conduct research. Staff also made calls throughout the research week to help identify additional buildings.

A large area in and around Wylie, Texas, had hail as large as 4 inches in diameter.

A large area in and around Wylie, Texas, had hail as large as 4 inches in diameter.

Several methods are used to help determine which areas and roofs are chosen. A list of building permits were provided to RICOWI by local building officials to assist with roof choice. In addition, one of RICOWI’s members from the area did preliminary research and provided addresses for the teams. These site owners were contacted through phone and email to notify them of the research project.

Teams were assigned low- or steep- slope research and were assigned addresses accordingly. Team members carried copies of the press release and additional information to help introduce the investigation to business owners and homeowners.

Ultimately, the objective of the re- search project in Dallas/Fort Worth included the following:

  • Investigate the field performance of roofing assemblies after this major hail event.
  • Factually describe roof assembly performance and modes of damage.
  • Formally report the results for substantiated hail events.

DAY-TO-DAY DUTIES

Before the daily assignments began, the volunteers reviewed the various research requirements, met their team members and learned their responsibilities. The teams were briefed on safety, how to take proper photos and how to capture important data.

As each day began, a briefing was held providing assignments for the day. This included addresses for investigation based on whether the team was focused on low- or steep-slope research. The teams were encouraged to stop at other homes and facilities that were undergoing roof repairs in addition to their assigned inspections.

The days were hot and long for the teams. Volunteers began each day at 8 a.m. and many did not return until 5 or 6 p.m., depending on the number of roofs they were assigned. The temperature during the day was around 80 F and humid; the temperatures on the roofs were much worse.

Pages: 1 2

NRCA Updates Online Wind-load Calculator

NRCA has updated Roof Wind Designer, an online wind-load calculator intended to provide roofing professionals with an easy way to determine a roof system’s design wind loads for many commonly encountered building types subject to code compliance. Roof Wind Designer was developed in cooperation with the Midwest Roofing Contractors Association and North/East Roofing Contractors Association. The free Web-based application is based on ASCE 7, “Minimum Design Loads for Buildings and Other Structures”, 2005 and 2010 editions. Roof Wind Designer has also been updated to determine design wind loads applicable to perimeter edge-metal flashing system design, which helps compliance with ANSI/SPRI ES-1 requirements. The application is limited to building heights less than 60 feet and is applicable to roof systems with slopes up to 12:12 and hip roofs with slopes up to 6:12.

Wind and Solar Accounted for All New Electrical Generation Brought into Service in January

Two new federal government reports underscore not only the continued rapid growth of renewable energy sources (biomass, geothermal, hydropower, solar, wind) in the electric power sector but also the ongoing failure of government forecasts to accurately anticipate and predict that growth.

In the first 2016 issue of its monthly “Energy Infrastructure Update” report, the Federal Energy Regulatory Commission (FERC) notes that five new “units” of wind (468 megawatts) and 6 new units of solar (145 MW) accounted for 100 percent of new electrical generation brought into service in January. No new capacity for nuclear, coal, gas, or oil was reported. Renewables now account for 17.93 percent of total installed operating generating capacity in the U.S.: hydropower (8.56 percent), wind (6.37 percent), biomass (1.43 percent), solar (1.24 percent), and geothermal (0.33 percent). In fact, installed capacity for non-hydro renewables (biomass, geothermal, solar, wind) alone (9.37 percent) now exceeds that for either nuclear (9.15 percent) or oil (3.84 percent).

The new renewable energy capacity added in January is continuing a trend. Just a month earlier, FERC’s December 2015 “Energy Infrastructure Update” revealed that renewables had accounted for 64 percent of all new electrical generating capacity installed last year.

Separately, the U.S. Energy Information Administration (EIA) has issued its latest “Electric Power Monthly” (covering all twelve months of 2015) indicating that electricity generated by renewable energy sources grew by over 2 percent compared to 2014 and accounted for almost 13.5 percent of “utility-scale” electrical output in the U.S. last year.

Moreover, EIA’s end-of-the-year data reveals significantly higher growth in the renewable energy sector than the agency had forecast less than three months ago for calendar year 2015 in its “Short-Term Energy Outlook.” At that time, EIA said it expected “total renewables used in the electric power sector to decrease by 1.8 percent in 2015. Hydropower generation is forecast to decrease by 8.2 percent, and non-hydropower renewable power generation is forecast to increase by 4.2 percent.”

In reality, compared to calendar year 2014, non-hydro renewables increased by 6.9 percent, hydro output declined by just 3.2 percent, and the total of hydropower plus non-hydro renewables grew by 2.03 percent. For calendar year 2015, grid-scale renewables accounted for 13.44 percent of net U.S. electrical generation—up from 13.16 percent in 2014. Of that, non-hydro renewables accounted for 7.30 percent while conventional hydropower was 6.14 percent. Generation by all non-hydro renewable sources grew in 2015. Biomass was up by 0.3 percent, wind by 5.1 percent, geothermal by 5.6 percent, and solar by 49.6 percent.

Renewable energy growth is significantly outpacing earlier EIA projections. Less than four years ago, in its “Annual Energy Outlook 2012,” EIA forecast that non-hydro renewables would grow at an annual rate of 3.9 percent and provide about 250,000 thousand megawatt-hours in 2015 while non-hydro renewable electrical generating capacity would reach approximately 85 gigawatts (GW). It also forecast that non-hydro renewables would not surpass hydropower until 2020.

In fact, EIA now reports actual generation from non-hydro renewables in 2015 to have hit 298,358 thousand megawatt-hours from utility-scale facilities alone; in addition, at least 12,141 thousand megawatt-hours was provided by distributed solar photovoltaic and an unknown amount from other distributed, small-scale renewables that are not grid-connected (small wind). Further, electrical generation from non-hydro renewables surpassed that from hydropower more than a year ago.

And, according to FERC, the total installed generating capacity of wind, biomass, solar and geothermal units had reached 109.6 GW by January 2016—and this reflects just the combined capacity of larger renewable energy facilities. FERC’s data only includes plants with nameplate capacity of 1 MW or greater and therefore does not reflect the additional capacity provided by rooftop solar or other smaller, distributed renewable energy systems.

“Just a few years ago EIA had forecast that renewables might provide 15 percent of the nation’s electricity by 2035,” notes Ken Bossong, executive director of the SUN DAY Campaign. “It now appears that goal could be reached within the next two years and quite possibly sooner.”

RICOWI Seeks Speakers for 2016 Seminars

The Roofing Industry Committee on Weather Issues (RICOWI), Clinton, Ohio, is committed to providing in-depth and comprehensive education to identify and address important technical issues related to the cause of wind and weather damage to roofing systems. RICOWI’s research and education initiatives focus on providing a broad knowledge base regarding wind, hail, energy efficiency and durability effects; establishing new/improved consensus standard practices for weather design and testing; and providing an educational platform of roof design and weather concepts within the building community.

RICOWI is currently seeking speakers for its 2016 Seminars. This is your opportunity to showcase your research, lessons learned in the field and educate others about the effects of weather on roofing systems.

The seminars’ audience consists of architects/engineers, consultants, building owners/facility managers, manufacturers, distributors, foremen, superintendents, project managers, roofing contractors, code bodies and the insurance industry. Eight 45-minute education sessions will be chosen related to the following potential presentation topics:

  • Weather Damage Case Studies
  • Lessons Learned in the Field after Weather Events
  • Innovative Roofing Solutions to Wind and Hail Issues
  • Sustainable Roofing
  • Green Building Codes for Roofing
  • Design Details
  • Mitigation and Loss Prevention
  • Edge Metal
  • Maintenance and Repair Solutions
  • Green Detail
  • Secondary Details
  • Weather Modeling and Predictability
  • Fasteners and Fastening Systems
  • Above-sheathing Ventilation
  • Lightweight Concrete
  • Research and Development

RICOWI’s audience prefers presentations that are:

  • Timely and will have an impact on the industry.
  • Innovative solutions to problems.
  • Forward looking to potential industry issues and threats.
  • How-to classes that stimulate and provide attendees with a new skill, technology or process.
  • Stimulating and cutting-edge for the construction and roofing industry.
  • Proposals for a better understanding of processes and techniques.
  • Solid research and data from case studies.
  • Upcoming research.

Presenters should have strong speaking experience and in-depth knowledge of subject matter presented. Topics should be related to the audience and not generic in nature and should not be product pitches.

Submission forms with abstracts should be submitted no later than June 15, 2015, to the RICOWI offices. The forms are available online. The RICOWI Conference and Education Committee will review, and authors will be notified regarding the selection of an abstract by Sept. 1, 2015. Once accepted, authors for the Spring 2016 seminar will be required to have bios and finalized abstracts in by Nov. 1, 2015, for the preliminary agenda publication on the RICOWI website and for distribution. All presentations and handouts will be due from presenters no later than Feb. 15, 2016.

If you have questions regarding RICOWI’s Call for Abstracts, contact Joan Cook, RICOWI’s executive director, at (330) 671-4569, or email jcook@ricowi.com.

Wind Loading on Rooftop Equipment

I recently attended a continuing-education conference for civil/structural engineers that discussed changes in the 2012 International Building Code (IBC) and the referenced ASCE 7-10 “Minimum Design Loads for Buildings and Other Structures”. During the seminar, the question was asked: “Who is responsible for the design of wind loading to rooftop equipment as defined in the IBC and Chapter 29 of ASCE 7-10?” The most accepted response was to add a section in the structural general notes that wind design on rooftop equipment is to be designed “by others”.

A structural engineer designed the metal support system and load transfer from the new HVAC unit down through the structure.

A structural engineer designed the metal support system and load transfer from the new
HVAC unit down through the structure.

The design requirements for wind loading on rooftop equipment have been included in previous editions of the IBC and ASCE 7, but significant changes have been included in ASCE 7-10. The increased attention is in part because of more severe wind events in recent years. While it is not the primary responsibility of the roofing consultant or contractor to evaluate the systems being placed on the roof, it is good to understand the code’s requirements for loading to rooftop equipment, how the load is determined and applied, and how the load is transferred to the building structure.

CODE REQUIREMENTS

The primary focus of the roofing professional in the IBC is concentrated on Chapter 15 (Roof Assemblies). While there are requirements in Chapter 15 addressing rooftop structures, these requirements, particularly in relation to wind loading, extend beyond Chapter 15. It is therefore imperative to be familiar with other sections of the code.

For instance, Section 1504 (Performance Requirements) refers the user multiple times to Chapter 16 (Structural Design) for wind-loading-design requirements. While roof manufacturers typically prequalify their systems based on various industry standards (ASTM, FM, ANSI, etc.), rooftop equipment supports are not typically prequalified because of the variability of placement and conditions. Similarly, new to this code cycle, Section 1509.7.1 includes the requirement for wind resistance for rooftop-mounted photovoltaic systems per Chapter 16 of the IBC. Other industries or trades have similar requirements. Section 301.15 of the 2012 International Mechanical Code and Section 301.10 of the 2012 Fuel and Gas Code require “equipment and supports that are exposed to wind shall be designed to resist the wind pressures in accordance with the IBC”.

Section 1609 of Chapter 16 (Wind Loads) applies to wind loading on every building or structure. Section 1609.1.1 provides two design options. The designer can use chapters 26 to 30 of ASCE 7-10 or Section 1609.6 of the IBC. Note however that Section 1609.6 is based on the design procedures used in Chapter 27 of ASCE 7-10, which does not address wind loading on rooftop equipment and thus is not applicable. Chapter 29 of ASCE 7-10 (Wind Loading on Other Structure and Building Appurtenances) contains the procedures used to determine wind loading on rooftop structures and equipment.

DETERMINING AND APPLYING WIND LOADING ON ROOFTOP EQUIPMENT

Properly specified ballasting blocks are designed and formed to better address the freeze/thaw cycle.

Properly specified ballasting blocks are designed and formed to better address the freeze/thaw cycle.


To determine wind loading on rooftop equipment, the first step is to identify the building Risk Category (formerly the Occupancy Category) and the building location. The Risk Category is determined from Section 1604.5 and Table 1604.5 of the IBC or Table 1.5-1 of ASCE 7-10. There are slight variations in the two codes but typically each will produce the same Risk Category.

The Risk Category and the location are then used to determine the design wind speed based on published wind-speed maps, available in Section 1609.3, figures 1609 A to C of the IBC, or Section 26.5.1, figures 26.5-1 A to C of ASCE 7-10. It can be difficult to read these maps to select the appropriate wind contour line, specifically along the East Coast. The Redwood City, Calif.-based Applied Technology Council (ATC), a non-profit that advances engineering applications for hazard mitigation, has digitized the maps providing a valuable resource for determining design wind speeds by GPS coordinates or the building’s address. Visit ATC’s wind-speed website. Note however that it is always advisable to cross check this design wind speed with the maps in the adopted code or with the local building authority.

PHOTOS: MIRO INDUSTRIES INC.

Pages: 1 2

Against the Wind

The city of Moore, Okla., recognizes it cannot keep doing things the way they’ve always been done. You may recall on May 20, 2013, an EF5 tornado did extensive damage to the town. The new residential construction codes are based on research and damage evaluation by Chris Ramseyer and Lisa Holliday, civil engineers who were part of the National Science Foundation Rapid Response team that evaluated residential structural damage after the May 2013 tornado.

“A home is deconstructed by a tornado, starting with the breaching of the garage door,” Ramseyer explains. “The uplift generated by the wind causes the roof to collapse until the pressure pulls the building apart. These new residential building codes could possibly prevent that in the future.”

The new codes require roof sheathing, hurricane clips or framing anchors, continuous plywood bracing and windresistant garage doors. Moore’s new homes are required to withstand winds up to 135 mph rather than the standard 90 mph.

Although the city of Moore deserves to be commended for passing a more stringent building code less than one year after the 2013 tornado, this wasn’t the first damaging tornadic event Moore had experienced. The town also made national headlines in 1999 when it was hit by what was then considered the deadliest tornado since 1971. Moore also was damaged by tornadoes in 1998, 2003 and 2010. In my opinion, it was time for the Moore City Council to do the right thing by its citizens.

As extreme weather events occur more frequently, more emphasis is being placed on commercial roof wind resistance, as well. Robb Davis, P.E., recently attended a continuing-education conference for civil/structural engineers that discussed changes in the 2012 International Building Code and the referenced ASCE 7-10 “Minimum Design Loads for Buildings and Other Structures”. During the seminar, it became clear to Davis that nobody is specifically responsible for the design of wind loading to rooftop equipment as defined in the IBC and Chapter 29 of ASCE 7-10. Therefore, Davis reached out to Roofing because he believes it’s important roofing professionals understand the code requirements for wind loading to rooftop equipment, how the load is determined and applied, and how the load is transferred to the building structure. Davis shares his insight in “Tech Point”.

As Davis points out in his article, by better understanding wind loads on rooftop equipment, roofing professionals will be even better positioned to lead the design and construction industry in creating more resilient roofs and, ultimately, strengthening the structure and protecting the people underneath.

Lighting and Security System Powered by Renewable Energy

Liberated Energy Inc.'s Guard-Lite, a hybrid lighting and security system.

Liberated Energy Inc.’s Guard-Lite, a hybrid lighting and security system powered by renewable energy.

Liberated Energy Inc. has released the Guard-Lite, a revolutionary hybrid lighting and security system. Its unique self-powered design enables it to be installed at any location without wiring or an electrical permit. With an increasing need for security and the demand for alternative energy growing, the Guard Lite provides a complete solution.

A wireless solar and wind powered construction camera fills a void in remote areas where security and surveillance couldn’t be performed before because of the costly expense in trying to provide power and an Internet connection to those areas. Liberated Energy makes this void a thing of the past by offering a cellular construction camera that is indefinitely powered by a solar panel and wind turbine and controlled by a web-based User Interface. Visit the topics below and see how a Liberated Energy Guard Lite can help your construction business:

    * Construction Camera
    * Stay Up To Date On Progress
    * Prevent Jobsite Theft
    * Verify Jobsite Deliveries
    * Ensure OSHA Procedures Compliance
    * View Multiple Jobsites Without Travel
    * Simple Installation & Examples
    * Prevent Jobsite Vandalism
    * Weatherproof Construction Camera
    * Solar Powered Construction Camera
    * Get A LIVE Picture Of The Jobsite
    * Create Time Lapse Videos
    * Outdated Construction Cameras
    * Customer & Investor Updates
    * Jobsite Current Conditions
    * Protect Against Sub-Contractor Claims

Ceiling Finishing System Meets Florida Building Code

Zip-UP Ceiling finishing system is designed for finishing the underside of exterior soffits at schools, hospitals, airports, and commercial facilities. Testing for wind pressure, under both static load and cyclic load, was performed in accordance with the requirements of the Florida Building Code (High Velocity Hurricane Zone) and the product meets every Florida standard for static and cyclic load tests of hurricane strength winds. The Static Load Test (TAS 202) is performed, in several ascending stages, under test conditions that eventually meet -110 psf design pressure for a prescribed length of time. The Cyclic Load Test (TAS 203) tests under various alternating positive/negative pressures for 631 cycles.

Made from durable interlocking PVC components engineered to fit together easily, Zip-UP Ceiling provides a flat, clean, grid-free washable mildew and mold resistant paintable ceiling surface. The panels unzip for quick access to mechanical and electrical services in the soffit. Unlike steel finishing systems which rust and require pressure washing, Zip-UP Ceiling is rust-free and can be cleaned with a garden hose.

The manufacturer warrants that the system is free from defects, materials and workmanship for 25 years from the date of purchase and that the components will continue to zip together for that time.

Sunburst Mineral Surfacing Reduces Rooftop Temperatures

The Garland Co. Inc.’s reflective Sunburst mineral surfacing

The Garland Co. Inc.’s reflective Sunburst mineral surfacing

The Garland Co. Inc.’s reflective Sunburst mineral surfacing reduces rooftop temperatures and protects against hail, wind and other weather. The surfacing is an optional upgrade with StressPly Plus FR Mineral and StressPly E FR Mineral membranes. It comes standard on StressPly EUV FR Mineral and StressPly Max FR Mineral. Membrane applications include hot, cold, self-adhering and torch.

(800) 321-9336