Hot-Air Welding Under Changing Environmental Conditions

Photo: Leister

The robotic welder’s speed, heat output and pressure should be properly programmed before the welding process begins. Photo: Leister.

The robotic welder’s speed, heat output and pressure should be properly programmed before the welding process begins. Photo: Leister.

Today’s most powerful hot-air welders for overlap welding of thermoplastic membranes are advertised to achieve speeds of up to 18 meters (59 feet) per minute. That’s fast enough to quickly ruin a roofing contractor’s day.

These robotic welders are digitally monitored to achieve consistent overlap welding performance, but they cannot adapt to changing environmental conditions automatically. It’s the contractor’s job to monitor and assess seam quality before the base seam is welded and when ambient temperatures or other factors potentially influence welding performance.

Successful hot-air welding requires the use of specialized, properly maintained and adjusted equipment operated by experienced personnel familiar with hot-air welding techniques. Achieving consistent welds is a function of ensuring that the roofing membrane surface is clean and prepared for heat welding, conducting test welds to determine proper equipment settings, and evaluating weld quality after welding has been completed.

Setting up hot-air robotic welders properly is the key to having a properly installed thermoplastic roof, and performing test welds is one of the most important steps. Making appropriate adjustments before the welding process begins ensures that the correct combination of welder speed, heat output and pressure is programmed into the robotic welder.

For most roofing professionals, these procedures have been firmly established in the minds of their crews and equipment operators through education and field training. But let’s not forget that Murphy’s Law often rules on both large and small low-slope roofing projects.

The frightening reality about using robotic welders is if they are set-up incorrectly or environmental conditions change, the applicator may weld thousands of feet of non-spec seam before anyone even bothers to check. If you probe for voids at the end of the day, it is probably too late.

If serious problems are discovered, the applicator must strip in a new weld via adhesive, cover tape, or heat welding, depending on what the membrane manufacturer will allow. If seams must be re-welded, the operator has to create not one, but two robotic welds on each side of the cover strip. The sheet will also need to be cleaned and re-conditioned no matter what method is used.

Can these errors be corrected? Absolutely. Except now the crew is in a real hurry because the roofer is working on his own time, and application errors tend to snowball under these conditions.

Reality Check

What goes on in the field is sometimes quite different than what one sees when hot-air welding thermoplastics under an expert’s supervision.To support this view, we asked four field service reps, each with a minimum of 35 years of roofing experience, to comment. The most senior “tech” has worked for six different thermoplastic membrane manufacturers in his career. Their names shall remain anonymous, but this writer will be happy to put readers in touch with them upon request.

Successful hand welding is a skill that is developed and refined over time. The correct selection of welder temperature and nozzle width can have a significant effect on the quality of the hand weld. Photo: GAF.

Successful hand welding is a skill that is developed and refined over time. The correct selection of welder temperature and nozzle width can have a significant effect on the quality of the hand weld. Photo: GAF.

So, let’s welcome Christian, Dave, Mark and Walter, and get straight to the point: Is the average roofing crew diligent enough when it comes to properly testing welds using industry best practices?

“I would say ‘probably not,” exclaims Walter. Dave just shakes his head as his colleague Mark adds, “I would have to say no.”

Considering the generally laudable performance of thermoplastic membranes over the last decade or so, we must interpret our experts’ opinions as suggesting the need for further improvement in hot-air welding techniques. Hence, the purpose of this article.

“There are a few outstanding issues causing bad welds,” says Walter. “These include welding over dirty or contaminated membranes; improper equipment setup; using crews with inadequate training; and knowing the difference between the weldability of various manufacturers’ membranes.”

Welding equipment consists of three main components: the power supply, the hot air welder (either automatic or hand-held), and the extension cord. A stable power supply of adequate wattage and consistent voltage is critical to obtaining consistent hot air welds and to prevent damage to the welder.

The use of a contractor-supplied portable generator is recommended, although house-supplied power may be acceptable. Relying on power sources that are used for other equipment that cycle on and off is not recommended. Power surges and/or disruptions and insufficient power may also impact welding quality. Proper maintenance of welding equipment is also of obvious importance.

“Contractors seem to never have enough power on the roof,” observes Mark. “The more consistent your power is, the more consistent your welds will be. Too many times, I’ve seen too many tools (hand guns, auto welder, screw guns and a RhinoBond machine) plugged into one generator.”

Generator-induced challenges on the jobsite are going to arise, agrees Christian. “But at least today there is more experience in understanding, dealing with, and ultimately preventing these issues,” he says.

Most TPO and PVC membrane suppliers also recommend using the latest automatic welding equipment, which provides improved control of speed, temperature and pressure. Our four experts generally agree that field welding performance has improved over the years and programmable robotic welders have helped. They also point to proper training and experience as crucial factors.

About the Author

Michael Russo
Michael Russo is a consultant to various roofing manufacturers and industry associations. He was the editor of Roofing/Siding/Insulation Magazine from 1980 to 2005. Russo has been reporting on the low-slope roofing industry for more than 36 years.

Be the first to comment on "Hot-Air Welding Under Changing Environmental Conditions"

Leave a Reply