Insulation Types, Application Methods and Physical Characteristics Must Be Reviewed, Understood and Selected to Ensure Roof System Performance

Designing and constructing roof systems (see my previous articles about roof decks, substrate boards and vapor barriers) continues with the thermal insulation layer. The governing building codes will dictate the minimum R-value required and, based on the R-value of the selected insulation, the thickness of required insulation can be determined. This plays into the design of the roof edge, which will be the subject of future articles. For now, let’s focus on insulation.

Photo 1: Polyisocyanurate (ISO) with organic facers

Photo 1: Polyisocyanurate
(ISO) with organic facers

Thermal insulation has multiple purposes, including to:

    ▪▪ Provide an appropriate surface on which the roof cover can be placed.
    ▪▪ Assist in providing interior user comfort.
    ▪▪ Assist in uplift performance of the roof system.
    ▪▪ Provide support for rooftop activities.
    ▪▪ Keep the cool air in during the summer and out during the winter, resulting in energy savings.

INSULATION OPTIONS

For the designer, there are numerous insulation material choices, each with its own positive and negative characteristics. Today’s insulation options are:

    ▪▪ Polyisocyanurate (ISO)

  • »» Varying densities
  • »» Organic facers (see photos 1 and 2)
  • »» Double-coated fiberglass facers (see photo 3)
  • ▪▪ Expanded polystyrene (XPS) (see photo 4)

  • »» Varying densities
  • ▪▪ Extruded polystyrene (EPS) (see photo 5)

  • »» Varying densities
  • ▪▪ Mineral wool (see photo 6)

  • »» Varying densities
  • ▪▪ Perlite
    ▪▪ High-density wood fiber

With today’s codes, the use of perlite and high-density wood fiber as primary roof insulation is very limited. The R-value per inch and overall cost is prohibitive.

Some attributes of the more commonly used insulation types are:
POLYISOCYANURATE

Photo 2: Polyisocyanurate (ISO) with organic facers

Photo 2: Polyisocyanurate
(ISO) with organic facers

    ▪▪ Predominate roof insulation in the market
    ▪▪ Organic and double-coated fiberglass facers (mold-resistant)
    ▪▪ Varying densities available: 18 to 25 psi, nominal and minimum, as well as 80 to 125 psi high-density cover boards
    ▪▪ Has an allowable dimensional change, per the ASTM standard, that needs to be understood and designed for
    ▪▪ Can be secured via mechanical fasteners or installed in hot asphalt and/or polyurethane foam adhesive: bead and full-coverage spray foam
    ▪▪ Has an R-value just under 6.0 per inch but has some downward drifting over time

EXPANDED POLYSTYRENE (EPS)

    ▪▪ Has good moisture resistance but can accumulate moisture
    ▪▪ Direct application to steel decks is often a concern with fire resistance
    ▪▪ Has varying densities: 1.0 to 3.0 pound per cubic foot
    ▪▪ Very difficult to install in hot asphalt; basically not appropriate
    ▪▪ Certain products can be secured with mechanical fasteners or lowrise foam adhesive
    ▪▪ Has stable R-values: 3.1 to 4.3 per inch based upon classification type

EXTRUDED POLYSTYRENE (XPS)

    ▪▪ Has good moisture resistance and is often used in protected roof membrane systems and plaza deck applications
    ▪▪ Direct application to steel decks is often a concern with fire resistance
    ▪▪ Has varying compressive strengths: 20 to 100 psi
    ▪▪ Not appropriate to be installed in hot asphalt
    ▪▪ Has stable R-values: 3.9 to 5 per inch based on classification type

MINERAL WOOL

    ▪▪ Outstanding fire resistance
    ▪▪ Stable thermal R-value: 4.0 per inch
    ▪▪ No dimensional change in thickness or width over time
    ▪▪ Available in differing densities
    ▪▪ May absorb and release moisture
    ▪▪ Can be installed in hot asphalt or mechanically attached

PHOTOS: HUTCHINSON DESIGN GROUP LTD.

Pages: 1 2 3

Several ‘Sandwich’ Roof Assemblies Mitigate Sound Transfer

We all want a roof over our heads to protect us from the cold winter months, hot summer months and precipitation year round. How much thought goes into the sound-control construction of a roof, though? Have you considered the acoustic properties of your roofing system? Admittedly, acoustics is not a topic that many roofing contractors think about. The construction of a roof, however, can have a significant impact on the sound quality of the building interior. While this may not seem important in every project, it can be a critical element of the design for concert halls, theaters, auditoria and even school classrooms.

Sound Isolation

The acoustics of a space depend on many criteria, including sound isolation, sound reflection, impact noise and sound transfer. In many cases, particularly in noisy, urban environments, there is a need to prevent loud outside noises, such as traffic, sirens and airplane noise, from entering quiet spaces. Sound isolation depends on the entire envelope of a space, including external walls, windows and roofs.

Green roofs, particularly the “intensive” version, which includes several inches of heavier-weight soil, can provide effective sound control.

Green roofs, particularly the “intensive” version, which includes several inches of heavier-weight soil, can provide effective
sound control.

Historically, roofs over sound-sensitive spaces have been built with fairly dense materials, such as concrete, which by themselves are relatively effective in blocking sound transfer. As construction methods have developed, however, more lightweight construction is being used. If thought and care are not given to the assembly, these lightweight construction methods can cause serious issues with acoustics. Rain noise, mechanical noise and other exterior sounds can all transfer readily through a thin, lightweight roofing system.

In an effort to use lighter-weight construction, a “sandwich” assembly may be used to mitigate sound transfer. Similar to an Oreo cookie, a sandwich assembly’s outer layers are comprised of a heavy, dense material, and the inner filling consists of insulation and/or airspace. The materials of this assembly can differ from concrete to roofing board, rigid insulation to fibrous insulation, gypsum board to acoustic ceiling tiles. The components can be combined in a variety of ways, each with varying levels of sound isolation.

One of the principle phrases often heard when discussing sound isolation is “mass air mass”, which refers to the separation of two bodies of mass by an air space. The greater the mass and the deeper the air space, the more sound isolation will result. For this reason, a heavy mass, such as 5-inch concrete, followed by a deep air space, such as an 18- to 24-inch ceiling cavity in which ducts are run, followed by a continuous layer of drywall ceiling will provide a high level of sound isolation. Additional steps, like adding sound-absorptive material to the air space and/or using resilient connections when supporting drywall, further improves the sound isolation of the assembly.

Sandwich Roof Assemblies

Several sandwich roof assembly approaches are possible, including:

Good: Multiple layers of dense roofing board (at 2.5 psf per board, a final density of 10 psf or four-ply is often recommended) on either side of insulation, which ideally would be a sound-absorptive fibrous fill, like mineral wool, can reduce sound transmission. This approach is similar to a “floating floor”, often used in interior spaces to isolate sound transfer from one room to another. (Equivalent Sound Transmission Class, or STC, ratings can range from low 50s to low 60s, depending on whether a ceiling is included below the deck.)

Drywall ceilings hung on resilient hangers in conjunction with a lightweight roofing system provide even greater sound isolation by virtue of the resilient connection or “decoupling” of the drywall layer from the rest of the building structure.

Drywall ceilings hung on resilient hangers in conjunction with a lightweight roofing system provide even greater sound isolation by virtue of the resilient connection or “decoupling” of the drywall layer from the rest of the building structure.

Good: Green roofs, particularly the “intensive” version, which includes several inches of heavier-weight soil, can provide effective sound control. These can be part of a sandwich approach with airspace or rigid insulation between soil and a more-dense roofing material, similar to the roofing board described in the previous example. The mass-air-mass combination is similar to the approach just mentioned, and the benefits of green roofs appeal to many building owners for a multitude of reasons, including minimizing urban heat islands and storm-water management.

Good: A 5-inch slab of normal-weight concrete (150 pcf) has a density of 62 psf. This tried-and-true method is still used regularly and often proves to be the most cost-effective method of enclosing a space. The best sound isolation will occur if this is used in conjunction with a ceiling below, but on its own it still provides a reasonable level of isolation in many environments. This isn’t technically a sandwich system unless paired with a ceiling below or a green roof above. (Equivalent STC ratings can range from low 50s to low 80s. The highest ratings require pairing a resiliently hung ceiling with the concrete, as described under “Multi-function Roof Assemblies”.) IMAGES: Threshold Acoustics LLC [Read more…]

Insulation Offers Acoustic Properties

ROXUL TOPROCK DD Plus

ROXUL TOPROCK DD Plus

Designed for commercial and industrial roof insulation applications, ROXUL TOPROCK DD Plus is a dual-density mineral wool board insulation with a rigid upper layer for durability and enhanced strength. The product, which is suitable for new construction and reroofing applications, is impregnated with a bitumen layer compatible with torch- or mop-applied membrane. The dimensionally stable insulation is non-combustible, will not warp or cup, features high impact resistance and low moisture absorption, offers acoustic properties, and is made of natural and recycled materials.