Roofing Project Keeps Arizona Warehouse Chill

When the original built-up roof on Hensley Beverage Company’s Tucson warehouse was failing, it was topped with a sprayed-in-place polyurethane foam roof system and an acrylic elastomeric protective coating. Photos: Rain Man Roofing

What do Landshark Lager, Stella Artois, 3 Amigos Tequila, Nesquik, and Sunny Delight have in common? All are products distributed by Arizona-based Hensley Beverage Company. And all are favorites of Rain Man Roofing, the contractor that repaired a 100,000-square-foot warehouse roof at Hensley’s Tucson location.

Hensley Beverage Company began in 1955 when Jim Hensley, starting with just 15 employees, delivered 73,000 cases of ice-cold Anheuser-Busch beer to thirsty Phoenix residents. Fast-forward to 2018 and Hensley is among the largest family-owned and -operated beverage distribution firms in the United States.

Today, under the leadership of CEO Robert Delgado, President Andrew McCain and Chairman of the Board Cindy McCain, Hensley Beverage Company is a 30-million-case wholesaler. Cindy McCain is the daughter of company founder Jim Hensley and wife of U.S. Sen. John McCain (R-Arizona). Andrew McCain is the senator’s son from a previous marriage.

The company operates a service fleet of more than 1,100 delivery vehicles and employs more than 1,200 people. Delivery now extends beyond Phoenix into every corner of Arizona. Trucks regularly deliver over 2,500 different beverages to thirsty desert dwellers, including domestic, imported, and craft beers, spirits, wine and non-alcoholic beverages of all sorts.

Beverages like these have to be refrigerated in a climate-controlled distribution warehouse while they are being stored. Some kegs need to be stored at 34 to 38 degrees Fahrenheit. Other products can get by at higher temperatures ranging from 45 to 60 degrees.

But the warehouse can’t control the environment efficiently with a leaky roof. That’s where Rain Man Roofing owner Mark Hughes came in.

Rain Man Roofing, founded in 2010, is one of the highest rated roofing specialists in both Arizona and California. In 2011, Rain Man became a BBB Accredited Business with an A+ rating, which it has consistently maintained. With more than 25 years of experience in the roofing industry, Rain Man is well known for inspecting every roofing solution at both the beginning and end of a job — and providing detailed status reports throughout the entire process.

Rain Man to the Rescue

In early 2018, Hensley’s VP of Fleet and Facilities Anthony Keffer contacted Hughes about roof issues at Hensley’s Tucson facility. Hughes’ roofers had, in September 2017, successfully stopped a leaking roof at another Hensley building in Flagstaff with a simple and affordable restoration solution, so Keffer asked Hughes to take a look at the Tucson site.

Crews from Rain Man Roofing completed work on the nearly 100,000-square-foot section of the warehouse roof in just three weeks. Photos: Rain Man Roofing

Several attempts to fix the roof in-house had failed to solve the problem. But Hughes and Rain Man, along with Erin Easter of Icynene-Lapolla, suggested a re-roof using a roof system of sprayed-in-place polyurethane foam and an acrylic elastomeric protective coating. Hensley accepted the proposal and work on the nearly 100,000-square-foot warehouse roof began.

Hensley inherited the 20-plus-year-old, low-sloped roof of the Tucson distribution facility in January 2016 when the company acquired Anheuser-Busch InBev wholesaler Golden Eagle Distributors Inc. The roof itself consisted of a UV-coated built-up, smooth-surfaced modified roof system over lightweight concrete. The old roof also included a cardboard separator installed between the concrete and a corrugated metal roof deck.

By 2018, the laps in the roof’s membrane no longer functioned properly and roof system failure became increasingly frequent. The lap failures, most likely caused by improper installation and deterioration from constant UV exposure, caused obvious openings in the membrane. Rain Man’s inspectors noticed these problems, as well as related failures in the expansion joints, and worked to come up with a viable solution.

The Repair Proposal

Together, Hughes and Easter proposed installing a spray-in-place polyurethane foam roof system over the existing system. The proposal covers the north end of the building (the 100,000-square-foot portion of the roof), where the majority of the controlled environment warehouse (CEW) is located. Hensley’s budget required that the southern portion of the building be repaired later; this second stage was tentatively set for August 2018.

A 1-inch thick layer of polyurethane spray foam was applied over the entire existing roof system. The foam was also used to form flashings at penetrations. Photos: Rain Man Roofing

The answer to the lap problems was to broom and blow the roof, which entailed cleaning the roof of debris and smoothing out the plies to ensure contact with adhesives. Lapolla Thermo-Prime Acrylic Roof Primer was to be applied to the roof, followed by a 1-inch layer of spray polyurethane foam (FOAM-LOK™ LPA 2800-4G) on top of the primer. Finally, a double-pass application of acrylic elastomeric Thermo-Flex 750 coating would finish the job.

Scheduled to start in April 2018, work was expected to take three weeks to complete and would require two foam rigs and eight full-time roofers with Rain Man’s David Caballero as foreman. Hensley would provide the roofers with a covered staging area (normally used as a patio for side-loaded delivery vehicles), where the crew could store equipment and roofing materials.

The staging area would allow Rain Man to shield its supplies and equipment from the high winds and cold weather. Because the job took place in April, when cold temperatures are common in Tucson, the spray foam would be stored under the patio cover. The colder spray foam gets, the longer it takes to warm it up so it can be used effectively.

The finished product was designed to take advantage of the insulating properties of the original roof, and the new “cool roof” monolithic system overlaying the old one would add R-value to the warehouse. The lightweight concrete separator would be retained so the spray foam wouldn’t fill the low spots in the corrugated metal roof deck, which would be a waste of materials.

Roof System Installation

Rain Man Roofing began the project with a pre-job inspection to discuss the application process of the new roof, go over safety and logistical concerns and keep the team at Hensley in the loop. Hughes prides himself on keeping his clients informed of each step in the roofing process.

Photos: Rain Man Roofing

After the details of the roof application were ironed out, the roofers set up their safety precautions. The Hensley building’s low-slope roof did not pose any unusual safety precautions, but Tucson regularly experiences strong winds that make roofing jobs more dangerous. Bright light also presented a danger to the roofers’ eyes, especially after the white acrylic coating was applied. The light reflected off the roof from the intense Arizona sun can be blinding. Hughes and Caballero made sure that their roofers took appropriate measures against the wind and the blinding light.

During the project, safety meetings were held every morning before work to discuss any danger areas that might present themselves that day. The crew also had to ensure each day that the surrounding area was protected from overspray. Sometimes this involved moving company vehicles away from the building.

Once they climbed up onto the roof, the roofers removed and properly disposed of 830 linear feet of expansion joint. After new expansion joints were mechanically fastened to the existing metal deck, the roof was blown and pressure washed free of dirt and debris. Polyurethane foam requires a completely clean surface to ensure a proper bond.

Thermo-Prime was applied to the prepped roof at a rate of one-quarter gallon per 100 square feet. Next, a 1-inch thick layer of polyurethane spray foam was applied over the entire existing roof system. The foam was also used to form all penetration flashings as needed.

Finally, the white acrylic protective coating was applied evenly to the roof in two passes. Each pass used 1.5 gallons per 100 square feet, adding up to three gallons total as described in the manufacturer’s specifications and 10-year limited warranty requirements.

When All’s Said and Done

After three weeks of hard work, high winds and bright sun, Rain Man completed Hensley’s new monolithic roof system. The new roof, designed to have zero seams and zero breaks between flashings and the roof system, will now stand up to the harsh desert climate and add a minimum of an R-6 insulation value to the controlled environment warehouse.

The Hensley Beverage Company is thrilled with its new roof and ready to contract Mark Hughes and Rain Man Roofing for more work in the future, starting with the southern part of the Tucson facility in August.

Hensley’s Anthony Keffer was also kind enough to provide beverages — non-alcoholic, of course — direct from the warehouse to the roofers working in the hot sun. And in the evenings, they were treated to some Bud Light to celebrate a job well done.

THE TEAM

Roofing Contractor: Rain Man Roofing, Phoenix, Arizona, www.rainmanroofing.com
Roofing Materials Distributor: Icynene-Lapolla, Houston, Texas, and Mississauga, Ontario, Canada, www.icynene-lapolla.com

MATERIALS

Primer: Thermo-Prime Acrylic Roof Primer, Lapolla, www.lapolla.com
Spray Polyurethane Foam: FOAM-LOK 2800-4G, Lapolla
Acrylic Elastomeric Coating: Thermo-Flex 750, Lapolla

Coordination Is the Key to Re-Roofing Active Port Terminal

Owned by the Port of New Orleans, the Nashville Ave. Terminal Complex offers more than a million square feet of cargo space. When the structure’s original built-up roof reached the end of its service life, a standing seam metal roof was manufactured and installed by Ray Bros. Inc. on the vast majority of the building. Photo: Aero Photo.

Construction projects on active jobsites can mean coordinating a lot of moving parts. Projects don’t get much more complicated than the recent roof replacement at the Nashville Ave. Terminal Complex, owned by the Port of New Orleans. The scope of work was multifaceted, the schedule was daunting, and everyone entering the facility had to have the proper security credentials. All of the work was performed next to the Mississippi River on top of an active wharf building, with cargo coming in and going out on trucks and forklifts as ships were loaded and unloaded. Materials housed inside the building were sensitive to moisture, dust and debris — and often had to be moved as work progressed.

Gino Ray Sr., president of Ray Bros. Inc., the roofing contractor on the project, likened it to a giant, three-dimensional puzzle. “It was almost like a Rubik’s Cube,” he says. “They had to move a section of material, and then when we finished a section, they slid the material over there so we could move on the next one. The whole time, the port was in operation. There was a lot of dancing involved.”

The Terminal

The Nashville Ave. Terminal Complex, operated by Ports America Louisiana Inc., offers more than 1 million square feet of storage space. Built in the 1960s, the structure was a rigid-frame, iron building with a ballasted tar and gravel roof over a heavy tongue-and-groove wooden deck. Decades of problems had seriously deteriorated the wooden deck, as well as the four-by-four wood nailers that were bolted to the rafters and purlins.

Key members of the team on the project included (from Left) N. Guy Williams of ECM Consultants, Kevin Haslauer of Glendale Enterprises, Gino Ray Sr. of Ray Bros. Inc., Craig Clark of Gulf Coast Service Group, and Curtis Shinogle of Gulf Coast Service Group.

The structure’s failing roof was replaced in three phases. During Phase 1, undertaken about a decade ago, a new built-up roof system was installed on one end of the building. When that section experienced performance issues, the owners looked for other options. Ray Bros. had the answer: an architectural metal roof.

Ray Bros. has been in business in New Orleans since 1996, when it was founded by Gino Ray Sr. The company has always focused primarily on metal roofing, and in the late ’90s it began roll forming and manufacturing its own panels and systems. “Today we manufacture everything we install,” Ray notes. “We’re kind of a hybrid — a manufacturer/contractor.”

The company’s metal panel system had been installed on several other port buildings, and the owners specified it for Phase 2 of the project, which covered a 230,000-square-foot section near the center of the building on either side of the firewall. Phase 2 was completed in 2014. Phase 3 encompassed 420,000 square feet to complete the sections on either side of Phase 2. Work began in August of 2016 and completed in May of 2017.

Ray Bros. manufactured and installed all of the metal roofing on the building — a total of 650,000 square feet — and served as both the prime contractor and the roofing contractor on the third phase of the project. Ray credits his dedicated team, the cooperation of all of the companies involved, and an innovative strategy for coping with the project’s many hurdles as the keys to a successful outcome.

Beefing Up the Structure

The standing seam metal roof system recommended by Ray Bros. was specified for its durability and low maintenance. The new system would give the port the long lifespan the owners desired, but it would necessitate some structural changes.

“Before we put the metal roof on, we had to beef up the existing trusses and reinforce the existing structure because it was such a light building now,” Ray notes. “There was an enormous amount of welding to the exiting trusses and existing purlins that had to be done before we could begin to put the roof on.”

Metal panels were roll formed directly onto the roof for installation. The panels on one side of the roof were 180 feet long. Photo: Ray Bros. Inc.

The plan was to beef up the structure from the inside and install the new gutters. Then the old roof could then be torn off and the new metal roof installed. The roof installation would be completed in sections, with crews moving from one area to the next in sequence.

Gulf Coast Service Group served as the structural steel and demolition contractor. Crews on man lifts set up inside the building reinforced the existing steel structure. New angle irons were welded to the bottom of the purlins. The existing sprinkler system had to be reconfigured, as it was attached to the four-by-four wood nailers that had to be removed. Work on the sprinklers was performed in conjunction with S & S Sprinkler Company. “We didn’t have to dismantle the sprinkler system, just move it,” Ray explains. “New hangers were mounted to the steel. We had to put a hanger on, take a hanger off. That was part of the tango dance as well.”

After the welders completed their work, crews from RK Hydrovac vacuumed the ballast off the roof. Prior to the demolition work, approximately 4,100 linear feet of gutters were installed. Oversized gutters were manufactured from 16-gauge stainless steel in the Ray Bros. metal shop, and all of the joints were welded together. Gutter sections were raised into place with a lift and secured with stainless steel brackets and hangers. “That gutter weighed about 11 pounds per running foot, and we made it in 21-foot lengths,” Ray notes.

The Roof Installation

The demolition crews and installation crews then swung into action. After sections of the deck were removed, metal panels were roll-formed on the site and installed. “The demo people would tear out a bay — which is a 20-foot section — all the way up to the ridge,” Ray explains. “On one side of the roof, the panels were 180 feet long. So, they would tear out a 20-foot-by-180-foot section, and we would come in right after that and put a 20-foot section of 180-foot panels down.”

Crew members on lifts reinforced the existing steel structure before the new roof was installed. Photo: Ray Bros. Inc.

Panels were made from 22-gauge galvalume. Zimmerman Metals supplied roll forming machines to Ray Bros. Inc. so the company could manufacture its proprietary product. The RBI MT-240 panels were 18 inches wide and interlock using continuous clips. A batten cap was installed over the top and then mechanically seamed using a machine manufactured by D.I. Roof Seamers.

The roll-up bay doors along the sides of the building and at the gable ends of the warehouse qualified it as a partially enclosed structure, which necessitated strict engineering standards. “In order to meet engineering standards, we had to use continuous clips,” Ray notes.

Every third bay had a skylight system to light the interior. Skylights used on the project were manufactured by CPI Daylighting Systems and installed by Glendale Industries. Custom-made curbs and crickets were fashioned by Ray Bros.

When skylights could not be installed right away, the openings were covered with plywood and felt to eliminate safety hazards and keep the interior of the building dry. “When the Glendale Industries people would show up, we’d remove the plywood and they would put on their system,” Ray notes. “As the job progressed, we’d re-use the same plywood and temporary coverings as we went along. We’d just leapfrog the plywood from curb to curb.”

After the roof was completed, the last step was to replace the wall panels in the interior that were designed to trap the smoke in the event of a fire. The old corrugated smoke panels were wired to the steel, but that system would not comply with today’s standards, so Ray Bros. created a sub-framing system to attach new ones. “We had 500 squares of smoke panels to install beneath the roof system,” Ray states. “We put in some16-gauge furring channels and attached the panels with screws. We manufactured all of that in house.”

After the roof was installed, 50,000 square feet of new corrugated smoke panels were installed. Photo: Ray Bros. Inc.

The demo crews, installation crews, and skylight crews kept moving in sequence under the direction of Jobsite Superintendent Robert Sinopoli, a 30-year industry veteran who has been with Ray Bros. ever since the company was founded. Sinopoli monitored everyone’s progress on the site and made sure everyone knew their assignments each day. “Everybody leapfrogged everybody else,” Ray notes. “Everyone had their own song and dance, and if one person got out of rhythm, it would domino back.”

Everyone involved on the project also needed to have a dance card, as security on the site was tight. Workers needed to have a background check and Transportation Worker Identification Credential (TWIC). Every vehicle had to have proper registration, insurance and inspection tags. The jobsite did not allow personal vehicles, and this posed a problem for Ray Bros., as the company routinely had 40 to 50 workers on site. “Everybody had to be on a company vehicle in a seat with a seat belt,” Ray notes. “I had to buy a used bus to transport workers in and out. We painted it, put our logo on it and made it look pretty. We just drove it 1.5 miles a day. At the end of the job, I sold the bus.”

Big Chunks

The project was wrapped up ahead of schedule, and it was the sequencing of work that was the key its success, according to Ray. “We didn’t want to tackle this project one bay at a time; we were looking at big chunks at a time,” he says. “We were able to develop a rhythm quicker that way. Instead of changing hats several times in the course of a day or a week, we put a hat on, let it stay on, got a big section done and moved on to the next. We didn’t want to change tools and change personnel. We wanted to look at it like a monolithic application.”

In the end, it all boiled down to pride — no one wanted to be the one to falter. “We self-perform a lot of our work, and we have existing relationships with all of the subcontractors we use,” Ray says. “I’m never going to let them down or leave them hanging, and I know they are going to do the same for me. That’s what made that job go — no one wanted to be the weak link. Everybody had a job to do and they did it. It worked out great.”

It was a true team effort. “This was like our Super Bowl, and we won,” Ray concludes. “I’m real proud of my company, our people, and all the people we worked with. I know that on our next job, I can count on them and they know they can count on me.”

TEAM

Architect: ECM Consultants, Metairie, Louisiana, www.ecmconsultants.com
General Contractor and Roofing Contractor: Ray Bros. Inc., New Orleans, Louisiana, www.raybrosinc.com
Structural Steel and Demolition Contractor: Gulf Coast Service Group, Harvey, Louisiana
Skylight Installer: Glendale Enterprises, Norco, Louisiana, www.glendaleinc.com
Sprinkler Repair Contractor: S & S Sprinkler Company, Baton Rouge, Louisiana, www.sssprinkler.com

MATERIALS

Metal Roof Panels: 18-inch wide, 22-gauge galvalume MT-240 standing seam panels, Ray Bros. Inc.
Skylights: CPI Daylighting Systems, www.cpidaylighting.com
Roll Former: Zimmerman Metals Inc., www.zimmerman-metals.com

New Facility Keeps Popular Brewery Hopping

Tree House Brewing opened its new 51,200-square-foot brewery in Charlton, Massachusetts in July of 2017. Photos: Sika Sarnafil

Standing in line for hours for one case of canned beer might seem foolish to some people, but to fans of Tree House Brewing — which was recently named one of the country’s Top 15 Craft Breweries by Forbes magazine — it is well worth it. Tree House Brewing began humbly enough in 2011 in a barn in Brimfield, Massachusetts. And yes, there was a tree house on the property.

Since then, the brewery has grown so much in popularity that it required a bigger facility.  So in July of 2017, Tree House opened a 51,200-square-foot brewery on 68 acres in Charlton, Massachusetts. On opening day, the new facility consistently had 1,000 customers waiting for hours to purchase Tree House’s ales, IPAs and stouts. Many of the patrons traveled from out of state and some arrived at 6 a.m., six hours before the doors opened.

It’s been said that the key to Tree House Brewing’s success is meticulous attention to details such as temperatures, additives and the water used in the brewing. It only made sense that the same attention to detail would be utilized when selecting a roofing system for the new facility.

Meeting the Bar

The roof that Tree House Brewing selected to cover its new brewery is Sika Roofing’s Sarnafil EnergySmart PVC membrane installed with the Sarnafil RhinoBond System. “We like Sarnafil because it is easy to use, easy to specify and an industry leader,” says Peter Webster, designer/project manager at Austin Design in Brattleboro, Vermont. “The light colored, reflective roof also offers energy savings, and our past experience with the Sarnafil roof shows it is a great product.”

The roof system for the new brewery features Sika Roofing’s Sarnafil EnergySmart PVC membrane, which was installed using the Sarnafil RhinoBond System. Photos: Sika Sarnafil

The fact that the Sarnafil system is easy to install was an important factor, considering the time crunch of the project. “This was a ‘hurry up’ project — we weren’t done with the design when the steel structure went up,” Webster explains.

The Sarnafil RhinoBond System uses advanced induction welding technology to bond the membrane directly to specially coated plates used to secure the insulation to the deck, all without penetrating the roofing membrane.

In addition, the Sarnafil RhinoBond System can be used in temperatures as low as zero degrees Fahrenheit (-18°C), making it an ideal application method for winter projects.

“Much of the installation was during the winter,” states Robert Luukko, president of Kidd-Luukko Corporation in Worcester, Massachusetts, the roofing contractor on the project.

Photos: Sika Sarnafil

“Not only did Kidd-Luukko have to deal with cold temperatures, but the site is on top of a hill so there were high winds,” says Frank Quigley, president and owner of F.D. Quigley & Associates of Wilbraham, Massachusetts, the construction manager on the job. And of course, since it was winter they needed to make the building watertight as quickly as possible.

“Fortunately, Kidd-Luukko was able to seal the building before we were hit by some big snowstorms in February,” Webster says.

Other challenges included installing a 42-foot by 8-foot skylight and working around gables where the low roof wrapped around the corners. “Kidd-Luukko employees were very professional, well managed and well organized,” Quigley states. “I’d be happy to use them again.”

“Can-Do” Attitude

“Bob Luukko and his team had a ‘can-do’ attitude that really helped move the project along,” Webster comments. In fact, Kidd-Luukko was able to complete the installation ahead of the allotted eight-month time frame, Luukko notes, adding that teamwork was key. “We had weekly meetings with a great group of guys involved with the project where we would discuss how we were going to come in on time and on budget with this installation,” he says. Sika Roofing representatives also played a role in meeting the deadline. “We had multiple visits from the Sika technician, which really kept the project moving forward,” Luukko remarks.

After a vapor barrier was applied on the metal deck, crews installed polyiso insulation, tapered insulation and a high-density cover board before the membrane was attached. Photos: Sika Sarnafil

Today, both the roof and the brewery are doing great. “We’ve had no problems with the roof at all,” Webster says. Luukko adds, “This project went so well that we are receiving a lot of interest in installing Sarnafil roofs on other projects.”

At the new facility, Tree House Brewing will be able to produce 40,000 barrels a year — compared to 12,000 barrels at their former facility in Monson, Massachusetts — and they plan to eventually expand the capacity to 180,000 barrels a year. That’s news that should make thirsty Tree House beer fans very, very happy.

TEAM

Architect: Austin Design, Brattleboro, Vermont, www.austindesign.biz
Construction Manager: F.D. Quigley & Associates, Wilbraham, Massachusetts, www.fdquig.com
Roofing Contractor: Kidd-Luukko Corporation, Worcester, Massachusetts, www.kidd-luukko.com

MATERIALS

Roof Membrane: Sarnafil 60 Mil EnergySmart White PVC membrane, Sika Sarnafil, https://usa.sarnafil.sika.com
Insulation: Sarnatherm Poly-Iso Insulation and Sarnatherm Coated Glass Tapered Insulation, Sika Sarnafil
Roof Board: Sarnatherm High Density Poly-Iso roof board with coated glass facers, Sika Sarnafil
Attachment System: Sarnafil RhinoBond System, Sika Sarnafil

Hospital Pedestrian Overpass Poses Logistical and Safety Challenges

The elevated pedestrian walkway at the BJC Healthcare/Washington University Medical Center complex connects the parking garages to buildings in the medical campus. It is approximately 1,200 feet long. Photo Paric Corporation and KAI Design & Build.

“The more complicated and complex the project, the more it is up our alley,” says Drew Bade, project manager for Bade Roofing Company in St. Louis, Missouri.

The company’s recent work roofing the new 1,200-foot-long elevated pedestrian walkway at the BJC Healthcare/Washington University Medical Center complex in St. Louis certainly qualifies as complex. The fully enclosed walkway connects the parking garages to buildings in the medical campus. Constructed atop 14 concrete pillars at an elevation of approximately 40 feet over busy roadways, the 13-foot-wide structure posed obvious logistical and safety challenges.

Bade Roofing’s union-affiliated workforce focuses on commercial projects, and the lion’s share of the company’s work is in the re-roofing arena. But for this new construction project, designed and executed through a joint venture between KAI Design & Build and Paric Corporation as part of a long-term project to update the medical campus, Drew Bade knew his company was the right candidate for the roofing portion of the job. The successful roofing installation proved him right. “We teamed up with Paric and KAI and made this thing happen,” says Bade.

The Roof System

The heated and air-conditioned walkway features carpeting, LED lighting, security intercoms, windows and metal wall panels. It also features a durable roof system. “It’s a walkway, but this thing was built like a tank,” notes Bade.

The walkway was constructed atop 14 concrete piers that elevate it over busy roadways. Photo Paric Corporation and KAI Design & Build.

The roof is a Firestone TPO system that includes R-20 polyiso insulation and a half-inch DensDeck cover board from Georgia-Pacific. The 60-mil UltraPly TPO membrane was attached using Firestone’s InvisiWeld induction welding system. The base of the system is the walkway’s 18-gauge steel deck, which features interior drains, scuppers and downspouts. Tapered insulation was used to provide proper drainage.

To make the project’s logistics even more complicated, work was scheduled on the fly as different areas of the walkway were completed. “There were some areas that weren’t built yet when we started to put this roof on,” Bade recalls. “It was a fluid situation. It was a challenge just to keep up with the changes, and we had to bounce around a lot. We couldn’t just start at one end and roof our way over to the other end. We had to hop around and handle what was finished at the time, tying the sections in together as they were completed.”

The short parapet walls were capped with edge metal after the roof was installed. “In some spots, after the roof was put on, it was more like a drip edge than a parapet,” Bade says. “At the highest, it was about 8 inches. We installed edge metal that tied into the metal wall panels they used on the sides of the bridge. It was all integrated together.”

Loading components proved tricky. “Getting material to each section and moving it around was a challenge in itself,” Bade explains. “We had to coordinate certain time frames that we could get our crane into an area to drop the material off. Because of how the safety systems were set up and how narrow this bridge was, you couldn’t really transport material along it very far. The crane essentially had to put the material right where it was going to go for that day.”

Loading the roof was usually done first thing in the morning, as use of the crane could mean blocking off roads or going into gated areas. “We’d try to beat all of the other trades in there,” Bade says.

The Safety Plan

The key to executing the project was finding the right safety plan. Initially the team explored the use of a

The Beamguard lifeline system from Guardian Fall Protection was installed in the center of the roof deck by workers in a boom lift. Photo Bade Roofing Company.

temporary guardrail system, but it proved infeasible due to the short parapet walls. “We use temporary guardrails on almost 100 percent of our projects, but the engineer came back and said the parapet walls weren’t strong enough to support a guardrail system,” Bade recalls.

The company looked for other options. “We looked at a special system that is more commonly used on road bridges during construction,” he says. “It uses a cable that runs between stanchions, and crew members can clip off to the cable.”

The system chosen was the Beamguard lifeline stanchion system from Guardian Fall Protection. The posts were attached to the steel I-beams every 30 feet. “We had to cut the metal deck out and clamp the posts to the I-beams,” Bade explains.

Crew members’ personal fall arrest systems were connected to the lifeline, but only two workers could tie off to the cable in between the stanchions. “We were tied off 100 percent of the time,” Bade says. “Safety was a huge issue for everyone on this project. There were no warnings. Everyone knew that if someone wasn’t tied off, they’d immediately be thrown off the job.”

The stanchions for the lifeline system were attached to the steel I-beams under the roof deck. Photo Bade Roofing Company.

The cable system posed some limitations on crew movement, which affected the delivery of materials. “With the cable system, you could only go so far because only two people could be tied off to a 30-foot section at a time. Essentially you had two guys walking 30 feet to hand insulation boards to the next two guys. It was kind of like a chain gang, moving material down each section of the roof.”

Ensuring the safety of pedestrians and vehicles below was also crucial. “There was a sidewalk area in the parking garage that was fully functional during the project, as there was a walkway constructed of scaffolding that offered overhead protection,” Bade notes.

However, other areas of sidewalk and roads had to be closed in order to complete work on some sections. “It depended where you were working that day,” Bade says. “Some areas of sidewalk had to be closed, and sometimes we had to redirect traffic. If you were working in areas without scaffolding, you would have to have two guys on the ground with flag lines directing traffic and blocking people off.”

One crucial section over a busy road posed some additional challenges. The three-lane road could only be shut down on one weekend. All of the trades had to complete their work that weekend, so the roofing installation had to be completed in just one day. “We did a 120-foot stretch of the roof that crossed this main road, and we did it all on a Saturday. It was the only opportunity we had. Otherwise we would’ve had to pay to shut the road down lane-by-lane, as we went. We were lucky that we were able to get in there on that one day and finish the whole length.”

The roofing installation was completed in sections as they were constructed after the 18-gauge steel deck was in place. Photo Bade Roofing Company.

Communication between all of the companies involved in the project was essential, notes Bade. “The foremen for every trade met every morning before work started. All of the contractors on the project had their meeting every week to plan and go over everything,” he says. “There were multiple forms you had to fill out every morning. The paperwork on this project was flying like you wouldn’t believe.”

After the work was completed in each section, the safety system had to be disassembled and removed. The last chore completed on each portion of the roof was to fill in the patches of roofing material where the stanchions had been. Workers completed these last steps tied off to a snorkel lift.

Despite the logistical hurdles, the project went smoothly and feedback has been positive, notes Bade. “It ended up being a great project for us,” he says. “It turned out really nice.”

It’s just another tough project now in the rear-view mirror. “The coordination, the safety, and the complexity of the actual roof system itself — not that it was necessarily a difficult roof to install, but given where it was, and how difficult it was to access — it all shows how dedicated and skilled our company is,” Bade concludes. “I don’t think there are a lot of companies out there that could do this project.”

TEAM

Architect: KAI Design & Build, St. Louis, www.kai-db.com
General Contractor: Joint venture between KAI Design & Build and Paric Corporation, St. Louis, www.paric.com
Roofing Contractor: Bade Roofing Company, St. Louis, www.baderoofing.com

MATERIALS

Membrane: 60-mil UltraPly TPO, Firestone Building Products, www.firestonebpco.com
Cover Board: DensDeck, Georgia-Pacific, www.densdeck.com

During Hospital Expansion, Contractor Protects Patients – and the Environment

The recent expansion of Pella Regional Health Center included adding a new third floor to the hospital. Photos The Duerson Corporation.

It’s not often a roofing contractor installs a new roof on a building before removing the old one, but that was just one of the wrinkles encountered by The Duerson Corporation during the recent expansion of Pella Regional Health Center in Pella, Iowa. The project involved adding a new third floor to the existing two-story hospital without disrupting the care of the patients below.

Protecting patients and meeting the needs of the hospital were the top priorities on the project, but another key focus was sustainability. Thanks to the initiative of The Duerson Corporation and Duro-Last, the roof system manufacturer on the project, almost all of the components on the existing roof were recycled, including the membrane, insulation, screws and plates.

The Game Plan

Based in Altoona, Iowa, The Duerson Corporation has been in business since 1986, specializing in commercial and industrial roofing, both new construction and retrofit. Kirk Duer, the company’s president, and Tanner Duer, head of business development, shared their insights on the Pella Regional Health Center Project with Roofing.

The Duro-Last roofing system included a vapor barrier, polyiso insulation, a cover board, and 50-mil white PVC membrane. Details included custom-fabricated curb flashings, walkway pads, and edge metal. Photos The Duerson Corporation.

They note that the goal on every project is to meet the client’s needs. “The hospital is a good example of that,” Kirk notes. “We took care of some maintenance and leak issues in the beginning, and then as time went on and trust was established, we did some re-roofing projects for them. Then they did this addition. It all flowed very well together.”

In a nutshell, the expansion plan involved erecting the steel for the new third floor, adding the roof deck, and installing the new roof system. The existing roof was left in place during this phase of construction, as the hospital was still active. After the walls were completed, the old roof system could be removed and recycled, and finally the interior work could be completed.

The first step involved erecting the steel for the new third floor. Kirk credits the hospital administrators for detailed planning before the project even got underway. That was the reason the existing roof was home to multiple 2-foot-by-2-foot boxes, complete with curbs and flashing.

Kirk Duer (left) and Tanner Duer of The Duerson Corporation in Altoona, Iowa, made sustainability a key focus of their business after they started recycling PVC membrane as part of Duro-Last’s Roof Take Back Program. Photos The Duerson Corporation.

“Those boxes covered the steel from the I-beams that were coming out of the roof, ready to receive that third floor,” Kirk notes. “When those boxes were removed, they just took their new steel and went up. It’s one of the more unique things I’ve ever seen in my history in the industry.”

As the steel went up, flashing the newly exposed I-beams was the first phase of the roofing work. “In the very beginning, once the general contractor removed those boxes, we added membrane and insulation around the I-beams and made sure they were watertight while the steelworkers erected their steel,” Kirk notes. “It was critical to keep it watertight because they still had patients right beneath us.”

Installing the New Roof

The new roof system covered an area of 27,600 square feet, bordered on one side by a long, curved parapet. The roof was installed over a structurally sloped steel deck with internal drains. “The first thing we did was install a vapor barrier over the entire deck,” Tanner notes.

The system consisted of Duro-Guard polyiso insulation with an R-value of 30, DensDeck cover board, and 50-mil Duro-Last white PVC membrane. Details included custom-fabricated curb flashings, Roof Trak III walkway pads, and coping and edge metal from Exceptional Metals.

Hospital administrators wanted a warranty from one source, notes Kirk. “Duro-Last refers to it as edge to edge, deck to sky,” he says. “Every component is supplied by Duro-Last and warranted by them for a full-system warranty. This particular administrator is adamant that this is what he wanted, and that’s what we delivered for them.”

Weather was not an issue, but the crews had to be ready to move quickly in the event of emergencies. “Work took place in September and October, which is about the most beautiful time of the year for us,” says Tanner. “The only unusual thing was that we had to have walkie-talkies on us at all times so they could alert us whenever a helicopter was coming in. Plant ops would notify us when a helicopter was coming in, and basically anything we had in the air we had to move down to the ground. We obviously wanted to make sure Pella Regional was not going to have a problem with us when a patient was flying in.”

After the metal roof deck was in place, crews installed a vapor barrier. Photos The Duerson Corporation.

The roofing installation was pretty straightforward, notes Kirk. There was one area on the lower roof that was an exception, as the new construction blocked access to the drains. “Originally the roof sloped in one direction, but because of the design of the new part of the building, we had to change the slope,” he says. “We had to turn everything around so water would flow in the other direction.”

On this section, the existing roof was torn off and removed, and tapered insulation was used to provide the proper slope. It was installed on a concrete deck over a working section of the hospital, so the installation was a bit tricky. “Rather than starting at the drain, which would be the easiest thing to do, we had to start at the furthest point away,” Kirk notes. “We were adding so much insulation, we didn’t want to create a bathtub, if you will. We had to start at the high point and work our way downhill so when we got to the drain, we’d have the correct elevation.”

Recycling the Old One

Once the third floor was closed in for the winter, it was time to remove the existing roof. “That was the fun part,” Tanner says.

The old roof was removed through a window. “We had an opening that was approximately 5 feet wide and 4 feet

The new roof system covers 27,600 square feet of the new third floor in an area bordered on one side by a long, curved parapet. Photos The Duerson Corporation.

tall,” Tanner recalls. “We took a fork lift with a BOXhaul on it and basically went up to the outside of the window and stuck it in there as far as we could without damaging any of the structure and started removing the material.”

No gas-powered vehicles were allowed to operate in the interior space. The fasteners had to be unscrewed and separated by hand. “When we removed the material, we tried to cut along the seams so we could see the screws and plates,” notes Tanner. “We sorted those out, and in the end we had more than 1,000 pounds of screws and plates we took back to our shop to be recycled.”

The existing membrane was cut up into 5-foot strips. Sections were rolled up and bundled for removal using a portable bander. Once the BOXhaul was full, it was taken to a flatbed trailer. “We completely filled the 20-foot trailer with old material to be recycled,” Tanner says. “In the end, there was 7,200 pounds of Duro-Last membrane that we recycled.”

The membrane was recycled as part of Duro-Last’s Roof Take Back Program. The company recycles the membrane, using it to construct products including walkway pads. “We’re lucky enough to have a Duro-Last plant in our state, and I actually took that load of material to be recycled to Sigourney one day,” Tanner says. “When I got there, they took a fork lift out there and unloaded it for me.”

The expanded polystyrene insulation was also removed and recycled. It was taken to Insulfoam, the original manufacturer. “The insulation necessitated a few more trips because it was so bulky,” Tanner says. “We kept an empty tractor trailer on site. In the end, we filled up three of those with approximately 120,000 board-feet of insulation that we took off of that project.”

The membrane that once covered the existing roof was cut into strips and rolled up for transport to the plant for recycling. Photos The Duerson Corporation.

The Duerson Corporation recycles as much material as it can throughout the year, including scrap metal and PVC membrane, which is stored in Duro-Last approved containers until there is enough to be transported to the plant.

“I thank Katie Chapman at Duro-Last for getting this program up and running and making us aware of it,” says Kirk. “Otherwise, that material would’ve just ended up in a landfill.”

Participating in the membrane recycling program was an eye-opener for everyone at the company. “One thing leads to another,” Kirk says. “We started recycling the roof membrane, and then you realize that there are other things you should think about. What do we do with the insulation? What do we do with the screws and plates? We started looking for ways to recycle everything, and pretty soon a full-blown sustainability program is born. It really does change the way you think once you buy into the system.”

The New Floor of the Hospital

After the general contractor removed the old vapor barrier with a floor scraper, the new third floor section was converted into a brand-new, pristine Obstetrics and Gynecology unit. The difference between the construction site and state-of-the-art hospital wing is striking.

The third floor of the hospital now houses a brand-new Obstetrics and Gynecology unit. Photos The Duerson Corporation.

“What we knew as the concrete roof deck was also designed to serve as the finished floor of the hospital,” Kirk says. “The new O.B. unit is just beautiful. If you look at that you can’t even imagine, unless you’ve been through the whole process, that the area with carpet and tile you’re looking at months ago used to be the roof.”

Safety for the roofing crews is always a priority at The Duerson Corporation, but safety precautions on this project also included ensuring the safety and security of the people in the hospital. “It was critical that we were always aware of the patients underneath us,” Kirk notes. “We had to be very mindful about the positioning of our generators, for example, so the exhaust wouldn’t be sucked into the fresh air intakes.”

Tanner points out that a checklist is prepared for each project to make sure everyone is aware of the client’s needs. This is especially important in health care projects like this one. “If someone goes out to take care of a leak call, for instance, we make sure they know everything they need to know to keep the client happy,” Tanner says. “With a health center, you have to take extra precautions. This can include items like making sure when you’re walking across the open roof that you don’t look into a patient’s room.”

“We’ve learned a great deal from working with Pella Regional Health Center in terms of just how mindful of everything we need to be,” Kirk says. “We recognize each of our clients, even though they all have a roof over their head, they all do something different for a living. In reality, everybody in any trade needs to recognize what your client does and what you need to do to be mindful of that.”

It takes communication to understand clients’ needs and build long-term relationships with customers. “We’ve got clients that we’ve serviced for 26 years,” Kirk says. “We’re all here to serve other people. In our case, it’s in roofing. Whether it’s a hospital or a convenience store, we’re serving them, and it all starts with that relationship.”

TEAM

Architect: Shive Hattery Architecture & Engineering, West Des Moines, Iowa, www.shive-hattery.com
General Contractor: Graham Construction, Des Moines, Iowa, www.grahamconstruction.com
Roofing Contractor: The Duerson Corporation, Altoona, Iowa, www.duersoncorporation.com

MATERIALS

Membrane: 50-mil Duro-Last white PVC membrane, Duro-Last, www.durolast.com
Insulation: Duro-Guard Polyiso, Duro-Last
Vapor Barrier: Duro-Last Vapor Barrier, Duro-Last
Coping: Coping and 2-piece edge metal, EXCEPTIONAL Metals, www.exceptionalmetals.com
Cover Board: DensDeck, Georgia-Pacific, www.densdeck.com

Metal Roof and Wall Panels Add Sleek, Modern Look to New Medical Complex

The CHRISTUS Trinity Mother Frances Herrington-Ornelas HealthPark in Tyler, Texas, houses an urgent care clinic, medical offices, a physical therapy area and a fitness center. Photos Petersen.

When Brice Harris of Harris Craig Architects began designing a new health complex in Tyler, Texas, he knew his client wanted to maintain continuity with the company’s other medical facilities but at the same time update the look. The roof and wall panel systems became the key to meeting both design goals.

The standing seam metal roof and metal wall panel systems are now the signature architectural features of the CHRISTUS Trinity Mother Frances Herrington-Ornelas HealthPark. The new construction project encompasses some 43,000 square feet of space housing an urgent care clinic, medical offices, a physical therapy area and a fitness center.

The Design

Harris Craig primarily focuses on institutional projects, including schools. About a quarter of the firm’s work involves health care facilities. On this project, a merger while it was underway added a few wrinkles in the design process.

Crews from Tyler Roofing installed the metal wall panels, which included PAC-CLAD HWP panels and PAC-CLAD flush panels from Petersen, as well as Longboard Siding in Dark Cherry Wood Grain from Mayne Coatings Corp. Photos Petersen.

“The hospital system is CHRISTUS Trinity Mother Frances,” Harris notes. “When we began work on the project, it was for Trinity Mother Frances, and they partnered up with another hospital network, so part of the challenge on this job was switching the branding in the middle of the project. Luckily our overall design fit very well. The branding changes were more prominent on the inside of the building and didn’t have much effect on the exterior design.”

The property is strategically located at the intersection of two busy roads, and the highly visible site posed some concerns. “We really didn’t have a back of the building,” Harris explains. “The challenge of the design really was to efficiently present this building well both to the street and to the people who would be approaching it from the opposite side. That actually drove a lot of how the building form turned out, along with our desire to both help modernize the look of the clinic a little bit and to tie it back to some of the existing branding.”

The roof was designed to echo the other structures but uses different materials. “They share the prominent use of the gable on the building, but here we brought it forward into a contemporary design aesthetic,” Harris says.

For this project the design team specified a standing seam metal roof manufactured by Petersen that encompasses approximately 6,000 square feet. Low-slope roof sections over each wing were covered with 60-mil TPO roof system manufactured by GAF.

Wall panels were used to extend the sleek, modern look down to the ground, in contrast to the many brick buildings in the area. “We wanted to lighten up the look a little bit and bring in some new materials as part of the modernization,” Harris says. “We have composite panels, horizontal panels, and wood-look aluminum panels.”

Key concerns included making sure the various systems tied together perfectly. “The transition between the wall and roof is a very important detail for us,” Harris notes. “The most complicated areas for us on this project would be at the front of the building with the big glass windows and composite panels, and areas where the composite panel ties into the TPO roof and the metal panels. That was probably the trickiest part of the design.”

The Installation

Tyler Roofing was a natural fit for the project due to its established relationships with the architect and general contractor, WRL General Contractors, headquartered in Flint, Texas. “We do a lot of work in Tyler, and we’ve worked on a lot of Harris Craig projects,” says Tommy Ray Sukiennik, a 24-year veteran at the company, which was founded by his father and uncle 35 years ago. “We’re one of the competitive contractors in our area.”

Herrington-Ornelas HealthPark is located at a busy intersection and is visible from all sides, so the building was designed to present itself well to every vantage point. Photos Petersen.

The company’s share of metal roof and wall panel work is increasing, notes Sukiennik. “We’ve been doing standing seam roofs for more than 20 years. Lately we’ve been doing a lot of wall panels — Petersen HWP wall panels, flush mounts, things like that. As far as metal goes, we try to be diverse enough that we can install any system that comes out on the plans.”

Tyler Roofing installed the roof systems and wall panels on the project, along with gutters, soffits and trim. Work began with the fully adhered GAF EverGuard TPO roof system, which was installed over the metal deck, 4 inches of polyisocyanurate insulation and a half-inch cover board. The low-slope roofs over the wings house the HVAC units, but details involved were straightforward, notes Sukiennik. “It was all pretty basic,” he says. “At some points we had to tie in the TPO roof, the metal on the parapet wall, and the metal on the exterior wall all together.”

To dry in the gable roof, crews installed 4 inches of polyiso insulation and a self-adhering waterproofing underlayment. They also installed custom-fabricated gutters. “We built a gutter that hangs off the edge of the eave that a starter clip goes on top of, so it’s integrated into the roof,” Sukiennik notes.

The 18-inch-wide, 24-gauge PAC-CLAD Snap-Clad roof panels in Champagne Metallic were delivered to the site. “We order all of the panels to length from Petersen,” Sukiennik says. “One of the plants is here in Tyler, and actually not far from the job, so it was very convenient. All of the rest of the trim, parapets, wall flashings and components we fabricated ourselves in the shop with metal they supplied.”

The roof panels were raised to the roof using a SkyTrak lift with specially built cradles. The wide-open jobsite and the flat roofs on either side of the gable made the roof area easily accessible. “It was just a straight run gable roof. There are no penetrations in the standing seam,” Sukiennik says. “The panels are easy to install. The Snap-Clad panels just pop together.”

The standing seam metal roof and metal wall panels were used to give the complex a modern look, while the prominent gable roof echoes the hospital system’s other facilities. Photos Petersen.

Tyler Roofing crews also installed the metal wall panels, which included 16-inch-wide, 24-gauge PAC-CLAD HWP panels in Dark Bronze from Petersen; 12-inch-wide, .032-inch aluminum PAC-CLAD flush panels from Petersen; and 6-inch-wide extruded Longboard Siding in Dark Cherry Wood Grain from Mayne Coatings Corp.

Wall panels were installed using scissor lifts and ladders. “We kept running a laser to make sure everything was horizontal and lined up,” says Sukiennik. “Then we finished it off with the trim and the cap. We tied everything into the expansion joints and trimmed it out so it was as clean as could be.”

The workload on this project was greater than usual, so skillfully managing the crews was important. “Usually we roof a building, and then we have to wait on the other contractors to do the brick and stucco on the exterior, and then we have to come back and trim it out and finish,” Sukiennik explains. “On this project, we did probably 70 percent of the exterior of the building, so we were working on the building continuously while we were doing other projects.”

The good news was that the crews had most of the work under their own control. “There were no issues of expecting someone else to make sure things were done the way we wanted them done. We tied everything in ourselves.”

Work was completed in the summer, so the heat was an issue. “When we put the wall panels on during July and August, it was pretty hot, so we had to work on one side of the building in the morning and then switch sides in the afternoon,” Sukiennik says, noting that his company is used to coping with extreme conditions. “In East Texas, we can have every type of weather there is within three days almost.”

Team Effort

Sukiennik credits WRL General Contractors for the well-coordinated jobsite. “We work on a lot of projects with the same contractors, so we all watch out for each other,” he says. “We do a good job of staying on top of things. We do a lot of work here, and this our family town, so we take pride in our work. We do the best we can.”

On the gable roof, Tyler Roofing installed 18-inch-wide, 24-gauge PAC-CLAD Snap-Clad roof panels cut to length by Petersen. Tyler Roofing also fabricated and installed trim, parapet metal, wall flashings and gutters. Photos Petersen.

Comprehensive details and pre-production meetings ensured the installation was uneventful, according to Sukiennik. “The architect does a good job of making sure everything blends,” he says. “We usually don’t have issues with details and things like that. They try to make it as smooth as could be.”

During construction, members of the design and installation teams stayed in touch to make sure everything went according to plan. “This project was only about a mile from our office, so it was convenient to stop by, and it was a project we were really excited about,” Harris recalls. “We meet frequently with our installers to discuss details. We like to learn what works and what doesn’t work from the crews in the field. We want to listen to the wisdom of the guys who are out there actually doing the work.”

It’s all part of making sure the building owner is satisfied. “What we were excited about for this project was the opportunity to define a new look for CHRISTUS Trinity Mother Frances to help them match the quality of their facilities with the quality of care in Tyler and the region,” Harris says. “We see one of our strengths as building long-term relationships with our clients to give us the opportunity and trust to do that.”

TEAM

Architect: Harris Craig Architects Inc., Tyler, Texas, www.hcarch.com
General Contractor: WRL General Contractors, Flint, Texas, www.wrl-gc.com
Roofing Contractor: Tyler Roofing Company Inc., Tyler, Texas, www.tylerroofingco.com

MATERIALS

Metal Roof Panels: 24-gauge, 18-inch PAC CLAD Snap-Clad Panels in Champagne Metallic, Petersen, www.pac-clad.com
TPO Roof Membrane: 60-mil EverGuard TPO, GAF, www.GAF.com
Metal Wall Panels: 24-gauge, 16-inch PAC-CLAD HWP panels in Dark Bronze, Petersen
Flush Panels: .032-inch, 12-inch Aluminum PAC-CLAD Flush Panels, Petersen
Wood Accent Panels: 6-inch Longboard Siding in Dark Cherry Wood Grain, Mayne Coatings Corp., www.longboardfacades.com